Absolute Cross Section for the ReactionC12(p,pn)C11at High Energy

1948 ◽  
Vol 73 (1) ◽  
pp. 80-81 ◽  
Author(s):  
Edwin M. Mcmillan ◽  
Richard D. Miller
2007 ◽  
Vol 16 (07n08) ◽  
pp. 2097-2102 ◽  
Author(s):  
◽  
ELENA BRUNA

Open charm mesons produced in high energy A-A interactions are expected to be powerful probes to investigate the medium produced in the collision. In this context it is important to measure the production of as many charmed hadrons as possible, such as D 0, D +, [Formula: see text] and Λc, because the measurement of their relative yield can provide information on the hadronization mechanism and is necessary to reduce the systematic error on the absolute cross section. The ALICE experiment at the LHC is designed to perform such measurements at midrapidity down to pT below 1 GeV/c, mainly by means of the silicon vertex and tracker detector, the time projection chamber and the time of flight detector. One of the main channels for the detection of charm production in ALICE is the exclusive reconstruction of the D + meson through its three charged body decay K−π+π+ in Pb - Pb [Formula: see text] and pp [Formula: see text] collisions. The selection strategies for this analysis and the results of a feasibility study on Monte Carlo events will be presented together with the perspectives for the study of D + quenching and azimuthal anisotropy measurements.


Author(s):  
P.A. Crozier

Absolute inelastic scattering cross sections or mean free paths are often used in EELS analysis for determining elemental concentrations and specimen thickness. In most instances, theoretical values must be used because there have been few attempts to determine experimental scattering cross sections from solids under the conditions of interest to electron microscopist. In addition to providing data for spectral quantitation, absolute cross section measurements yields useful information on many of the approximations which are frequently involved in EELS analysis procedures. In this paper, experimental cross sections are presented for some inner-shell edges of Al, Cu, Ag and Au.Uniform thin films of the previously mentioned materials were prepared by vacuum evaporation onto microscope cover slips. The cover slips were weighed before and after evaporation to determine the mass thickness of the films. The estimated error in this method of determining mass thickness was ±7 x 107g/cm2. The films were floated off in water and mounted on Cu grids.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chaebin Lee ◽  
Xiangji Liu ◽  
Weizhong Zhang ◽  
M. A. Duncan ◽  
Fangchao Jiang ◽  
...  

High-Z nanoparticles (HZNPs) afford high cross-section for high energy radiation and have attracted wide attention as a novel type of radiosensizers. However, conventional HZNPs are often associated with issues such...


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
E. Iancu ◽  
A. H. Mueller ◽  
D. N. Triantafyllopoulos ◽  
S. Y. Wei

Abstract Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken x, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction z ≃ 1 of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality Q2 is (much) larger than the target saturation momentum $$ {Q}_s^2 $$ Q s 2 , but such that z(1 − z)Q2 ≲ $$ {Q}_s^2 $$ Q s 2 . Working in the limit z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta k⊥ ≪ Qs of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta k⊥ ≳ Qs, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in k⊥ centred around Qs. When z(1 − z)Q2 ≪ Q2, this results in a Cronin peak in the nuclear modification factor (the RpA ratio) at moderate values of x. With decreasing x, this peak is washed out by the high-energy evolution and replaced by nuclear suppression (RpA< 1) up to large momenta k⊥ ≫ Qs. Still for z(1 − z)Q2 ≪ $$ {Q}_s^2 $$ Q s 2 , we also compute SIDIS cross-sections integrated over k⊥. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.


1970 ◽  
Vol 18 (4) ◽  
pp. 523-531 ◽  
Author(s):  
I.D. Clark ◽  
R.P. Wayne

Pramana ◽  
2012 ◽  
Vol 79 (5) ◽  
pp. 1301-1308 ◽  
Author(s):  
A COOPER-SARKAR ◽  
P MERTSCH ◽  
S SARKAR

It is shown that the first Bom approximation for the exchange of two uncorrelated electrons should vanish. A formalism for the T matrix is presented which has this property. The high-energy result for the two-electron exchange cross-section previously calculated in first Born approximation behaves like E -7 . This result is in error due to a lack of orthogonality of initial and final states. When this is corrected the result for uncorrelated electrons has an energy dependence E -11 . The introduction of correlation gives terms behaving like E -10 which cannot be calculated unam biguously.


Sign in / Sign up

Export Citation Format

Share Document