scholarly journals Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector

2021 ◽  
Vol 15 (6) ◽  
Author(s):  
P. Abratenko ◽  
M. Alrashed ◽  
R. An ◽  
J. Anthony ◽  
J. Asaadi ◽  
...  
1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
L. Olivera-Nieto ◽  
A. M. W. Mitchell ◽  
K. Bernlöhr ◽  
J. A. Hinton

AbstractThe presence of muons in air-showers initiated by cosmic ray protons and nuclei is well established as a powerful tool to separate such showers from those initiated by gamma rays. However, so far this approach has been fully exploited only for ground level particle detecting arrays. We explore the feasibility of using Cherenkov light from muons as a background rejection tool for imaging atmospheric Cherenkov telescope arrays at the highest energies. We adopt an analytical model of the Cherenkov light from individual muons to allow rapid simulation of a large number of showers in a hybrid mode. This allows us to explore the very high background rejection power regime at acceptable cost in terms of computing time. We show that for very large ($$\gtrsim 20$$ ≳ 20  m mirror diameter) telescopes, efficient identification of muon light can potentially lead to background rejection levels up to 10$$^{-5}$$ - 5 whilst retaining high efficiency for gamma rays. While many challenges remain in the effective exploitation of the muon Cherenkov light in the data analysis for imaging Cherenkov telescope arrays, our study indicates that for arrays containing at least one large telescope, this is a very worthwhile endeavor.


2019 ◽  
Vol 216 ◽  
pp. 03009 ◽  
Author(s):  
Tim Huege ◽  
Lukas Brenk ◽  
Felix Schlüter

Radio detection of inclined air showers is currently receiving great attention. To exploit the potential, a suitable event reconstruction needs to be developed. A crucial step in this direction is the development of a model for the lateral distribution of the radio signals, which in the case of inclined air showers exhibits asymmetries due to “earlylate” effects in addition to the usual asymmetries from the superposition of charge-excess and geomagnetic emission. We present a model which corrects for all asymmetries and successfully describes the lateral distribution of the energy fluence with a rotationally symmetric function. This gives access to the radiation energy as a measure of the energy of the cosmic-ray primary, and is also sensitive to the depth of the shower maximum.


Author(s):  
M. Aglietta ◽  
B. Alessandro ◽  
P. Antonioli ◽  
F. Arneodo ◽  
L. Bergamasco ◽  
...  

1982 ◽  
Vol 43 (C8) ◽  
pp. C8-69-C8-88 ◽  
Author(s):  
B. Rossi
Keyword(s):  

2010 ◽  
Vol 180 (5) ◽  
pp. 519 ◽  
Author(s):  
L.I. Dorman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document