scholarly journals Chirality selective spin interactions mediated by the moving superconducting condensate

2018 ◽  
Vol 98 (18) ◽  
Author(s):  
D. S. Rabinovich ◽  
I. V. Bobkova ◽  
A. M. Bobkov ◽  
M. A. Silaev
2000 ◽  
Vol 10 (PR5) ◽  
pp. Pr5-389-Pr5-392 ◽  
Author(s):  
A. F. Zhuravlyov
Keyword(s):  

2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Dario Fiore Mosca ◽  
Leonid V. Pourovskii ◽  
Beom Hyun Kim ◽  
Peitao Liu ◽  
Samuele Sanna ◽  
...  

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
B. Basu-Mallick ◽  
F. Finkel ◽  
A. González-López

Abstract We introduce a new class of open, translationally invariant spin chains with long-range interactions depending on both spin permutation and (polarized) spin reversal operators, which includes the Haldane-Shastry chain as a particular degenerate case. The new class is characterized by the fact that the Hamiltonian is invariant under “twisted” translations, combining an ordinary translation with a spin flip at one end of the chain. It includes a remarkable model with elliptic spin-spin interactions, smoothly interpolating between the XXX Heisenberg model with anti-periodic boundary conditions and a new open chain with sites uniformly spaced on a half-circle and interactions inversely proportional to the square of the distance between the spins. We are able to compute in closed form the partition function of the latter chain, thereby obtaining a complete description of its spectrum in terms of a pair of independent su(1|1) and su(m/2) motifs when the number m of internal degrees of freedom is even. This implies that the even m model is invariant under the direct sum of the Yangians Y (gl(1|1)) and Y (gl(0|m/2)). We also analyze several statistical properties of the new chain’s spectrum. In particular, we show that it is highly degenerate, which strongly suggests the existence of an underlying (twisted) Yangian symmetry also for odd m.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuqi Wang ◽  
Soroush Arabi ◽  
Klaus Kern ◽  
Markus Ternes

AbstractSymmetries in nanoscale structures can be decisive for their structural, electronic, and magnetic properties, particularly in systems with reduced dimensions. Here we show that the symmetries of a flat metal-organic molecule adsorbed on a transition metal dichalcogenide, a 2-dimensional layered material, have a dramatic effect on the total spin and the intramolecular spin-spin interactions. Using a scanning probe microscope, we find two different molecular spin states by modifying the symmetry of the molecules via the twist angle to the substrate. Additionally, we observe significant non-collinear Dzyaloshinskii–Moriya interaction between two electron spins on the molecule induced by the spin-orbit coupling of the van der Waals coupled layered material with broken inversion symmetry. Our work opens a path for modifying the spin by exploiting symmetries and for studying the nature of surface-induced non-collinear spin-spin interaction within a single molecule which might allow the realization of more complex topological spin structures.


1977 ◽  
Vol 164 (3) ◽  
pp. 617-620 ◽  
Author(s):  
W J Ingledew ◽  
T Ohnishi

1. It is shown that the electron-transfer inhibitor thenoyltrifluoroacetone abolishes a respiratory-chain electron-paramagnetic-resonance absorbance due to spin-spin interactions of ubisemiquinones at concentrations similar to those required for inhibition of succinate oxidation. 2. A specific site of interaction of thenoyltrifluoroacetone with the respiratory chain is proposed to be on the ubisemiquinone with which succinate dehydrogenase reacts. 3. Our results further demonstrate the close association of the HiPIP (high-potential iron-sulphur) centre of succinate dehydrogenase with ubisemiquinone.


Biochemistry ◽  
1977 ◽  
Vol 16 (7) ◽  
pp. 1251-1257 ◽  
Author(s):  
Laurance S. Johnston ◽  
Francis C. Neuhaus
Keyword(s):  

2005 ◽  
Vol 2005 (03) ◽  
pp. 072-072 ◽  
Author(s):  
Paul de Medeiros ◽  
Sanjaye Ramgoolam

Sign in / Sign up

Export Citation Format

Share Document