Communications Physics
Latest Publications


TOTAL DOCUMENTS

790
(FIVE YEARS 692)

H-INDEX

22
(FIVE YEARS 16)

Published By Springer Nature

2399-3650

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Kenji Shimazoe ◽  
Mizuki Uenomachi ◽  
Hiroyuki Takahashi

AbstractSingle-photon-emission computed tomography (SPECT) and positron-emission tomography (PET) are highly sensitive molecular detection and imaging techniques that generally measure accumulation of radio-labeled molecules by detecting gamma rays. Quantum sensing of local molecular environment via spin, such as nitrogen vacancy (NV) centers, has also been reported. Here, we describe quantum sensing and imaging using nuclear-spin time-space correlated cascade gamma-rays via a radioactive tracer. Indium-111 (111In) is widely used in SPECT to detect accumulation using a single gamma-ray photon. The time-space distribution of two successive cascade gamma-rays emitted from an 111In atom carries significant information on the chemical and physical state surrounding molecules with double photon coincidence detection. We propose and demonstrate quantum sensing capability of local micro-environment (pH and chelating molecule) in solution along with radioactive tracer accumulation imaging, by using multiple gamma-rays time-and-energy detection. Local molecular environment is extracted through electric quadrupole hyperfine interaction in the intermediate nuclear spin state by the explicit distribution of sub-MeV gamma rays. This work demonstrates a proof of concept, and further work is necessary to increase the sensitivity of the technique for in vivo imaging and to study the effect of scattered radiation for possible application in nuclear medicine.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Yuta Murakami ◽  
Shintaro Takayoshi ◽  
Tatsuya Kaneko ◽  
Zhiyuan Sun ◽  
Denis Golež ◽  
...  

AbstractMany experiments show that strong excitations of correlated quantum materials can cause non-thermal phases without equilibrium analogues. Understanding the origin and properties of these nonequilibrium states has been challenging due to the limitations of theoretical methods for nonequilibrium strongly correlated systems. In this work, we introduce a generalized Gibbs ensemble description that enables a systematic analysis of the long-time behavior of photo-doped states in Mott insulators based on equilibrium methods. We demonstrate the power of the method by mapping out the nonequilibrium phase diagram of the one-dimensional extended Hubbard model, which features η-pairing and charge density wave phases in a wide photo-doping range. We furthermore clarify that the peculiar kinematics of photo-doped carriers, and the interaction between them, play an essential role in the formation of these non-thermal phases. Our results establish a new path for the systematic analysis of nonequilibrium strongly correlated systems.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Bernard R. Matis ◽  
Steven W. Liskey ◽  
Nicholas T. Gangemi ◽  
Aaron D. Edmunds ◽  
William B. Wilson ◽  
...  

AbstractAnderson localization arises from the interference of multiple scattering paths in a disordered medium, and applies to both quantum and classical waves. Soft matter provides a unique potential platform to observe localization of non-interacting classical waves because of the order of magnitude difference in speed between fast and slow waves in conjunction with the possibility to achieve strong scattering over broad frequency bands while minimizing dissipation. Here, we provide long sought evidence of a localized phase spanning up to 246 kHz for fast (sound) waves in a soft elastic medium doped with resonant encapsulated microbubbles. We find the transition into the localized phase is accompanied by an anomalous decrease of the mean free path, which provides an experimental signature of the phase transition. At the transition, the decrease in the mean free path with changing frequency (i.e., disorder strength) follows a power law with a critical exponent near unity. Within the localized phase the mean free path is in the range 0.4–1.0 times the wavelength, the transmitted intensity at late times is well-described by the self-consistent localization theory, and the localization length decreases with increasing microbubble volume fraction. Our work sets the foundation for broadband control of localization and the associated phase transition in soft matter, and affords a comparison of theory to experiment.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jackson R. Badger ◽  
Yundi Quan ◽  
Matthew C. Staab ◽  
Shuntaro Sumita ◽  
Antonio Rossi ◽  
...  

AbstractUnconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jonas Spethmann ◽  
Elena Y. Vedmedenko ◽  
Roland Wiesendanger ◽  
André Kubetzka ◽  
Kirsten von Bergmann

AbstractWhen magnetic skyrmions are moved via currents, they do not strictly travel along the path of the current, instead their motion also gains a transverse component. This so-called skyrmion Hall effect can be detrimental in potential skyrmion devices because it drives skyrmions towards the edge of their hosting material where they face potential annihilation. Here we experimentally modify a skyrmion model system—an atomic Pd/Fe bilayer on Ir(111)—by decorating the film edge with ferromagnetic Co/Fe patches. Employing spin-polarized scanning tunneling microscopy, we demonstrate that this ferromagnetic rim prevents skyrmion annihilation at the film edge and stabilizes skyrmions and target states in zero field. Furthermore, in an external magnetic field the Co/Fe rim can give rise to skyrmions pinned to the film edge. Spin dynamics simulations reveal how a combination of different attractive and repulsive skyrmion-edge interactions can induce such an edge-pinning effect for skyrmions.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Kirill P. Kalinin ◽  
Natalia G. Berloff

AbstractA promising approach to achieve computational supremacy over the classical von Neumann architecture explores classical and quantum hardware as Ising machines. The minimisation of the Ising Hamiltonian is known to be NP-hard problem yet not all problem instances are equivalently hard to optimise. Given that the operational principles of Ising machines are suited to the structure of some problems but not others, we propose to identify computationally simple instances with an ‘optimisation simplicity criterion’. Neuromorphic architectures based on optical, photonic, and electronic systems can naturally operate to optimise instances satisfying this criterion, which are therefore often chosen to illustrate the computational advantages of new Ising machines. As an example, we show that the Ising model on the Möbius ladder graph is ‘easy’ for Ising machines. By rewiring the Möbius ladder graph to random 3-regular graphs, we probe an intermediate computational complexity between P and NP-hard classes with several numerical methods. Significant fractions of polynomially simple instances are further found for a wide range of small size models from spin glasses to maximum cut problems. A compelling approach for distinguishing easy and hard instances within the same NP-hard class of problems can be a starting point in developing a standardised procedure for the performance evaluation of emerging physical simulators and physics-inspired algorithms.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Myung-Joon Lee ◽  
Il-Kwon Oh

AbstractValley degree of freedom, associated with the valley topological phase, has propelled the advancement of the elastic waveguide by offering immunity to backscattering against bending and weak perturbations. Despite many attempts to manipulate the wave path and working frequency of the waveguide, internal characteristic of an elastic wave such as rich polarization has not yet been utilized with valley topological phases. Here, we introduce the rich polarization into the valley degree of freedom, to achieve topologically protected in-plane and out-of-plane mode separation of an elastic wave. Accidental degeneracy proves its real worth of decoupling the in-plane and out-of-plane polarized valley Hall phases. We further demonstrate independent and simultaneous control of in-plane and out-of-plane waves, with intact topological protection. The presenting procedure for designing the topologically protected wave separation based on accidental degeneracy will widen the valley topological physics in view of both generation mechanism and application areas.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Akash Choudhary ◽  
Subhechchha Paul ◽  
Felix Rühle ◽  
Holger Stark

AbstractThe transport of motile microorganisms is strongly influenced by fluid flows that are ubiquitous in biological environments. Here we demonstrate the impact of fluid inertia. We analyze the dynamics of a microswimmer in pressure-driven Poiseuille flow, where fluid inertia is small but non-negligible. Using perturbation theory and the reciprocal theorem, we show that in addition to the classical inertial lift of passive particles, the active nature generates a ‘swimming lift’, which we evaluate for neutral and pusher/puller-type swimmers. Accounting for fluid inertia engenders a rich spectrum of complex dynamics including bistable states, where tumbling coexists with stable centerline swimming or swinging. The dynamics is sensitive to the swimmer’s hydrodynamic signature and goes well beyond the findings at vanishing fluid inertia. Our work will have non-trivial implications on the transport and dispersion of active suspensions in microchannels.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Jie Zhao ◽  
Yan-Ting Hu ◽  
Yu Lu ◽  
Hao Zhang ◽  
Li-Xiang Hu ◽  
...  

AbstractGeneration of energetic electron-positron pairs using multi-petawatt (PW) lasers has recently attracted increasing interest. However, some previous laser-driven positron beams have severe limitations in terms of energy spread, beam duration, density, and collimation. Here we propose a scheme for the generation of dense ultra-short quasi-monoenergetic positron bunches by colliding a twisted laser pulse with a Gaussian laser pulse. In this scheme, abundant γ-photons are first generated via nonlinear Compton scattering and positrons are subsequently generated during the head-on collision of γ-photons with the Gaussian laser pulse. Due to the unique structure of the twisted laser pulse, the positrons are confined by the radial electric fields and experience phase-locked-acceleration by the longitudinal electric field. Three-dimensional simulations demonstrate the generation of dense sub-femtosecond quasi-monoenergetic GeV positron bunches with tens of picocoulomb (pC) charge and extremely high brilliance above 1014 s−1 mm−2 mrad−2 eV−1, making them promising for applications in laboratory physics and high energy physics.


2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Hanan Hamamera ◽  
Filipe Souza Mendes Guimarães ◽  
Manuel dos Santos Dias ◽  
Samir Lounis

AbstractThe ultimate control of magnetic states of matter at femtosecond (or even faster) timescales defines one of the most pursued paradigm shifts for future information technology. In this context, ultrafast laser pulses developed into extremely valuable stimuli for the all-optical magnetization reversal in ferrimagnetic and ferromagnetic alloys and multilayers, while this remains elusive in elementary ferromagnets. Here we demonstrate that a single laser pulse with sub-picosecond duration can lead to the reversal of the magnetization of bulk nickel, in tandem with the expected demagnetization. As revealed by realistic time-dependent electronic structure simulations, the central mechanism involves ultrafast light-induced torques that act on the magnetization. They are only effective if the laser pulse is circularly polarized on a plane that contains the initial orientation of the magnetization. We map the laser pulse parameter space enabling the magnetization switching and unveil rich intra-atomic orbital-dependent magnetization dynamics featuring transient inter-orbital non-collinear states. Our findings open further perspectives for the efficient implementation of optically-based spintronic devices.


Sign in / Sign up

Export Citation Format

Share Document