scholarly journals Static black hole solutions with a self-interacting conformally coupled scalar field

2008 ◽  
Vol 77 (10) ◽  
Author(s):  
Gustavo Dotti ◽  
Reinaldo J. Gleiser ◽  
Cristián Martínez
2018 ◽  
Vol 27 (11) ◽  
pp. 1843009 ◽  
Author(s):  
Carlos A. R. Herdeiro ◽  
Eugen Radu

We obtain spinning boson star solutions and hairy black holes with synchronized hair in the Einstein–Klein–Gordon model, wherein the scalar field is massive, complex and with a nonminimal coupling to the Ricci scalar. The existence of these hairy black holes in this model provides yet another manifestation of the universality of the synchronization mechanism to endow spinning black holes with hair. We study the variation of the physical properties of the boson stars and hairy black holes with the coupling parameter between the scalar field and the curvature, showing that they are, qualitatively, identical to those in the minimally coupled case. By discussing the conformal transformation to the Einstein frame, we argue that the solutions herein provide new rotating boson star and hairy black hole solutions in the minimally coupled theory, with a particular potential, and that no spherically symmetric hairy black hole solutions exist in the nonminimally coupled theory, under a condition of conformal regularity.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050025 ◽  
Author(s):  
Mykola M. Stetsko

Scalar–tensor theory of gravity with nonlinear electromagnetic field, minimally coupled to gravity is considered and static black hole solutions are obtained. Namely, power-law and Born–Infeld nonlinear Lagrangians for the electromagnetic field are examined. Since the cosmological constant is taken into account, it allowed us to investigate the so-called topological black holes. Black hole thermodynamics is studied, in particular temperature of the black holes is calculated and examined and the first law of thermodynamics is obtained with help of Wald’s approach.


2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Zi-Yu Tang ◽  
Yen Chin Ong ◽  
Bin Wang ◽  
Eleftherios Papantonopoulos

1995 ◽  
Vol 52 (6) ◽  
pp. 3440-3456 ◽  
Author(s):  
S. Alexander Ridgway ◽  
Erick J. Weinberg

Author(s):  
E. Elizalde ◽  
G. G. L. Nashed ◽  
S. Nojiri ◽  
S. D. Odintsov

Abstract Novel static black hole solutions with electric and magnetic charges are derived for the class of modified gravities: $$f({{{\mathcal {R}}}})={{{\mathcal {R}}}}+2\beta \sqrt{{{\mathcal {R}}}}$$f(R)=R+2βR, with or without a cosmological constant. The new black holes behave asymptotically as flat or (A)dS space-times with a dynamical value of the Ricci scalar given by $$R=\frac{1}{r^2}$$R=1r2 and $$R=\frac{8r^2\Lambda +1}{r^2}$$R=8r2Λ+1r2, respectively. They are characterized by three parameters, namely their mass and electric and magnetic charges, and constitute black hole solutions different from those in Einstein’s general relativity. Their singularities are studied by obtaining the Kretschmann scalar and Ricci tensor, which shows a dependence on the parameter $$\beta $$β that is not permitted to be zero. A conformal transformation is used to display the black holes in Einstein’s frame and check if its physical behavior is changed w.r.t. the Jordan one. To this end, thermodynamical quantities, as the entropy, Hawking temperature, quasi-local energy, and the Gibbs free energy are calculated to investigate the thermal stability of the solutions. Also, the casual structure of the new black holes is studied, and a stability analysis is performed in both frames using the odd perturbations technique and the study of the geodesic deviation. It is concluded that, generically, there is coincidence of the physical properties of the novel black holes in both frames, although this turns not to be the case for the Hawking temperature.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450095 ◽  
Author(s):  
S. H. Hendi ◽  
M. Sepehri Rad

Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born–Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.


1997 ◽  
Vol 79 (9) ◽  
pp. 1595-1598 ◽  
Author(s):  
Burkhard Kleihaus ◽  
Jutta Kunz

Sign in / Sign up

Export Citation Format

Share Document