scholarly journals Emergent Fine Structure Constant of Quantum Spin Ice Is Large

2021 ◽  
Vol 127 (11) ◽  
Author(s):  
Salvatore D. Pace ◽  
Siddhardh C. Morampudi ◽  
Roderich Moessner ◽  
Chris R. Laumann
2021 ◽  
Vol 3 (1) ◽  
pp. 61-66
Author(s):  
Jiří Stávek

We have proposed several new rules for the description of events in the microworld. We have newly defined the interpretation of the quantum spin as the angular momentum curvature and defined the geometry of helixes and toroidal helixes of quantum particles. Some new properties of quantum particles can be experimentally tested. Based on this concept we have defined the electron g-factor as the ratio of the toroidal torsion and curvature and events between the electron and its coupling photon. From this model we have extracted the values of the fine-structure constant α and the Planck constant h. The comparison of these values with the latest experimental data reveals some possible circular arguments in the experimental determination – the so-called SI barrier created by the fixing of the SI constants (SI – International System of Units). We propose on the one side to analyze those possible circular arguments and on the other side to continue to develop new generations of instruments for getting one or two more significant figures of those values h and c. The predictions of this classical model could be compared with the best predictions of QED (quantum electrodynamics) for the fine-structure constant α.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 344
Author(s):  
T. D. Le

Astrophysical tests of current values for dimensionless constants known on Earth, such as the fine-structure constant, α , and proton-to-electron mass ratio, μ = m p / m e , are communicated using data from high-resolution quasar spectra in different regions or epochs of the universe. The symmetry wavelengths of [Fe II] lines from redshifted quasar spectra of J110325-264515 and their corresponding values in the laboratory were combined to find a new limit on space-time variations in the proton-to-electron mass ratio, ∆ μ / μ = ( 0.096 ± 0.182 ) × 10 − 7 . The results show how the indicated astrophysical observations can further improve the accuracy and space-time variations of physics constants.


2019 ◽  
Vol 218 ◽  
pp. 02012
Author(s):  
Graziano Venanzoni

I will report on the recent measurement of the fine structure constant below 1 GeV with the KLOE detector. It represents the first measurement of the running of α(s) in this energy region. Our results show a more than 5σ significance of the hadronic contribution to the running of α(s), which is the strongest direct evidence both in time-and space-like regions achieved in a single measurement. From a fit of the real part of Δα(s) and assuming the lepton universality the branching ratio BR(ω → µ+µ−) = (6.6 ± 1.4stat ± 1.7syst) · 10−5 has been determined


2012 ◽  
Vol 85 (10) ◽  
Author(s):  
Eloisa Menegoni ◽  
Maria Archidiacono ◽  
Erminia Calabrese ◽  
Silvia Galli ◽  
C. J. A. P. Martins ◽  
...  

2016 ◽  
Vol 94 (16) ◽  
Author(s):  
S. Petit ◽  
E. Lhotel ◽  
S. Guitteny ◽  
O. Florea ◽  
J. Robert ◽  
...  

2014 ◽  
Vol 798 (1) ◽  
pp. 18 ◽  
Author(s):  
Jon O'Bryan ◽  
Joseph Smidt ◽  
Francesco De Bernardis ◽  
Asantha Cooray

Sign in / Sign up

Export Citation Format

Share Document