Abstract
The fine-structure constant, α, unites fundamental aspects of electromagnetism, quantum physics, and relativity. As such, it is one of the most important constants in nature. However, why it has the value of approximately 1/137 has been a mystery since it was first identified more than 100 years ago. To date, it is an ad hoc feature of the Standard Model, as it does not appear to be derivable within that body of work — being determined solely by experimentation. This report presents a mathematical formula for α that results in an exact match with the currently accepted value of the constant. The formula requires that a simple corrective term be applied to the value of one of the factors in the suggested equation. Notably, this corrective term, at approximately 0.023, is similar in value to the electron anomalous magnetic moment value, at approximately 0.0023, which is the corrective term that needs to be applied to the g-factor in the equation for the electron spin magnetic moment. In addition, it is shown that the corrective term for the proposed equation for α can be derived from the anomalous magnetic moment values of the electron, muon, and tau particle — values that have been well established through theory and/or experimentation. This supports the notion that the corrective term for the α formula is also a real and natural quantity. The quantum mechanical origins of the lepton anomalous magnetic moment values suggest that there might be a quantum mechanical origin to the corrective term for α as well. This possibility, as well as a broader physical interpretation of the value of α, is explored.