Resonance energy shifts during nuclear Bragg diffraction of x rays

1989 ◽  
Vol 63 (15) ◽  
pp. 1629-1632 ◽  
Author(s):  
J. Arthur ◽  
G. S. Brown ◽  
D. E. Brown ◽  
S. L. Ruby
JETP Letters ◽  
1997 ◽  
Vol 65 (9) ◽  
pp. 734-737 ◽  
Author(s):  
M. V. Koval’chuk ◽  
A. Ya. Kreines ◽  
Yu. A. Osip’yan ◽  
V. V. Kvardakov ◽  
V. A. Somenkov
Keyword(s):  

2017 ◽  
Vol 750 ◽  
pp. 53-66
Author(s):  
Fabrizio Fiori ◽  
Emmanuelle Girardin ◽  
Alessandra Giuliani ◽  
Adrian Manescu ◽  
Serena Mazzoni ◽  
...  

The rapid development of new materials and their application in an extremely wide variety of research and technological fields has lead to the request of increasingly sophisticated characterization methods. In particular residual stress measurements by neutron diffraction, small angle scattering of X-rays and neutrons, as well as 3D imaging techniques with spatial resolution at the micron or even sub-micron scale, like micro-and nano-computerized tomography, have gained a great relevance in recent years.Residual stresses are autobalancing stresses existing in a free body not submitted to any external surface force. Several manufacturing processes, as well as thermal and mechanical treatments, leave residual stresses within the components. Bragg diffraction of X-rays and neutrons can be used to determine residual elastic strains (and then residual stresses by knowing the material elastic constants) in a non-destructive way. Small Angle Scattering of neutrons or X-rays, complementary to Transmission Electron Microscopy, allows the determination of structural features such as volume fraction, specific surface and size distribution of inhomogeneities embedded in a matrix, in a huge variety of materials of industrial interest. X-ray microtomography is similar to conventional Computed Tomography employed in Medicine, allowing 3D imaging of the investigated samples, but with a much higher spatial resolution, down to the sub-micron scale. Some examples of applications of the experimental techniques mentioned above are described and discussed.


1986 ◽  
Vol 4 (1) ◽  
pp. 145-156 ◽  
Author(s):  
M. C. Jackson ◽  
R. D. Long ◽  
D. Lee ◽  
N. J. Freeman

The paper reviews a number of X-ray streak cameras developed at AWRE. These cameras are used to provide temporal and one-dimensional spatial or spectral information on X-rays emitted from laser produced plasmas. Two of these cameras have been designed to be combined with other diagnostic instrumentation; one with a Wolter X-ray microscope (×22 magnification) and the other with a Bragg diffraction crystal spectrometer. This latter instrument provides a few eV spectral resolution and ∼15 ps temporal resolution; a typical experimental application at the AWRE HELEN laser facility will be described. The paper describes the circuitry of the bipolar avalanche transistor ramp generator used to drive the streak plates of the cameras. Improvements to this include: (a) increasing the fastest streak rate to ∼10 ps mm−1 by a distributed capacitance network across each of the bipolar stacks of transistors, and (b) reducing the trigger jitter to approximately ±10 ps by the use of a new mix of transistors in the stack and a Raytheon RS 3500 avalanche transistor. Additional improvements have now been added. These include a ‘half-scan’ user facility to aid initial camera timing and direct switching to select the sweep rate of the camera.


1982 ◽  
Vol 26 ◽  
pp. 331-336
Author(s):  
John D. Zahrt

Recent, state of the art, x-ray spectrometers have made use of polarizing the source x-rays by scattering through 90° (1) . One then observes the analyte fluorescence in a direction perpendicular to the scattering plane in which the polarized x-rays are generated. The signal/noise ratio at the detector is much improved. Unfortunately there is a concomitant loss of intensity and analysis times increase. This adversely affects the minimum detection limits.


1998 ◽  
Vol 4 (S2) ◽  
pp. 376-377
Author(s):  
P. Cloetens ◽  
J. Baruchel ◽  
J.P. Guigay ◽  
W. Ludwig ◽  
L. Mancini ◽  
...  

X-ray imaging started over a century ago. For several decades its only form was absorption radiography, in which contrast is due to local variations in beam attenuation. About forty years ago, a new form of X-ray imagery, Bragg-diffraction imaging or X-ray topography, developed into practical use. It directly reveals crystal defects in the bulk of large single crystals, and paved the way to microelectronics by leading to the growth of large, practically perfect, crystals. The advent of third-generation synchrotron radiation sources of X-rays such as ESRF and APS is now making possible, through the coherence of the X-ray beams, a novel form of radiography, in which contrast arises from phase variations across the transmitted beam, associated with optical path length differences, through Fresnel diffraction. Phase radiography and its three-dimensional companion, X-ray phase tomography, are providing new information on the mechanics of composites as well as on biological materials.


2001 ◽  
Vol 227 (2) ◽  
pp. 429-447 ◽  
Author(s):  
V.B. Molodkin ◽  
S.I. Olikhovskii ◽  
E.N. Kislovskii ◽  
E.G. Len ◽  
E.V. Pervak

Sign in / Sign up

Export Citation Format

Share Document