scholarly journals The pgp1 Mutant Locus of Arabidopsis Encodes a Phosphatidylglycerolphosphate Synthase with Impaired Activity

2002 ◽  
Vol 129 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Changcheng Xu ◽  
Heiko Härtel ◽  
Hajime Wada ◽  
Miki Hagio ◽  
Bin Yu ◽  
...  
Keyword(s):  
Genetics ◽  
2001 ◽  
Vol 158 (4) ◽  
pp. 1825-1827 ◽  
Author(s):  
Heather A Wiatrowski ◽  
Marian Carlson

Abstract We describe a new approach for identifying the gene corresponding to a mutation in Saccharomyces cerevisiae. A library of mTn-lacZ/LEU2 insertions is tested for failure to complement the mutation, and the noncomplementing insertion is used to obtain sequence. This approach offers an alternative to cloning by complementation with a plasmid library.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Nicholas R Benson ◽  
John Roth

In the course of a lytic infection the Salmonella phage P22 occasionally encapsulates bacterial DNA instead of phage DNA. Thus, phage lysates include two classes of viral particles. Phage particles carrying bacterial DNA are referred to as transducing particles and deliver this DNA to a host as efficiently as particles carrying phage DNA. Once injected, the transduced DNA can either recombine with the recipient chromosome to form a “complete” transductant, or it can establish itself as an expressible, nonreplicating genetic element and form an “abortive” transductant. In this work, we describe a P22-phage mutant with reduced ability to form abortive transductants. The mutation responsible for this phenotype, called tdx-1, was found as one of two mutations contributing to the high-transducing phenotype of the P22-mutant HT12/4. In addition, the tdx-1 mutation is lethal when combined with an erf-am mutation. The tdx-1 mutation has been mapped to a region of the P22 genome that encodes several injected proteins and may involve more than one mutant locus. The phenotypes of the tdx-1 mutation suggest that the Tdx protein(s) normally assist in the circularization of the P22 genome and also contribute to the formation of DNA circles thought to be required for abortive transduction.


2021 ◽  
Vol 22 (19) ◽  
pp. 10772
Author(s):  
Chang Ho Kang ◽  
Eun Seon Lee ◽  
Ganesh M. Nawkar ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
...  

Interaction between light signaling and stress response has been recently reported in plants. Here, we investigated the role of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a key regulator of light signaling, in endoplasmic reticulum (ER) stress response in Arabidopsis. The cop1-4 mutant Arabidopsis plants were highly sensitive to ER stress induced by treatment with tunicarmycin (Tm). Interestingly, the abundance of nuclear-localized COP1 increased under ER stress conditions. Complementation of cop1-4 mutant plants with the wild-type or variant types of COP1 revealed that the nuclear localization and dimerization of COP1 are essential for its function in plant ER stress response. Moreover, the protein amount of ELONGATED HYPOCOTYL 5 (HY5), which inhibits bZIP28 to activate the unfolded protein response (UPR), decreased under ER stress conditions in a COP1-dependent manner. Accordingly, the binding of bZIP28 to the BIP3 promoter was reduced in cop1-4 plants and increased in hy5 plants compared with the wild type. Furthermore, introduction of the hy5 mutant locus into the cop1-4 mutant background rescued its ER stress-sensitive phenotype. Altogether, our results suggest that COP1, a negative regulator of light signaling, positively controls ER stress response by partially degrading HY5 in the nucleus.


1985 ◽  
Vol 44 (7) ◽  
pp. 431-433 ◽  
Author(s):  
P Wordsworth ◽  
D Ogilvie ◽  
R Smith ◽  
B Sykes

1971 ◽  
Vol 18 (3) ◽  
pp. 329-339 ◽  
Author(s):  
A. M. Wall ◽  
Ralph Riley ◽  
M. D. Gale

SUMMARYAn investigation was made of the chromosomal position of the mutant locus, in Mutant 10/13 of Triticum aestivum (2n = 6x = 42), affecting homoeologous chromosome pairing at meiosis. In hybrids between Mutant 10/13 and rye (Secale cereale 2n = 14), homoeologous chromosomes frequently pair at meiosis although normally, in wheat-rye hybrids, this happens infrequently.The association of the mutant condition with chromosome 5B was determined by (i) the absence of segregation in hybrids obtained when Mutant 10/13 monosomic 5B was pollinated by rye; (ii) the occurrence of trisomie segregation for pairing behaviour in 28-chromosome wheat-rye hybrids, obtained from SB trisomie wheat parents with two 5B chromosome from a non-mutant and one from a mutant parent; (iii) the absence of segregation for pairing behaviour in the 29-chromosome wheat-rye hybrids obtained from the same trisomie wheat parents.The alternative pairing behaviours segregated independently of the centromere when wheat plants that were simultaneously heteromorphic, 5BL telocentric/5B complete, and heterozygous for the Mutant 10/13 state, were pollinated by rye. The alternative chromosome-pairing patterns segregated to give a ratio not different from 1:1, so that the association of homoeologous pairing with Mutant 10/13 probably derived from the occurrence of mutation at a single locus on 5BL. In the disomic heteromorphic state, 5BL was 91 map units in length.Trisomie wheats with two complete 5B chromosomes and one 5BL telocentric, that were also heterozygous for the Mutant 10/13 condition, were pollinated by rye. Among the resulting 28-chromosome hybrids there was a 2:1 segregation of hybrids with low pairing: high (homoeologous) pairing and also of hybrids with complete 5B: telocentric 5BL. However, there was no evidence of linkage in this trisomie segregation. All the 29-chromosome hybrids from this cross had low pairing and it could be concluded that the single mutant allele, in Mutant 10/13, was recessive. In the trisomie condition, relative to a simplex situation, 5BL was 33·05 map units in length.The critical locus on 5BL was designated Pairing homoeologous. The normal dominant allele was symbolized Ph and the recessive allele, in Mutant 10/13, ph.The prevention of homoeologous pairing by the activity of a single locus makes the evolution of the regular meiotic behaviour of T. aestivum more readily comprehensible.


1961 ◽  
Vol 52 (4) ◽  
pp. 149-153 ◽  
Author(s):  
JAY C. MURRAY ◽  
ADRIAN M. SRB

Sign in / Sign up

Export Citation Format

Share Document