scholarly journals The Heat-Shock Element Is a Functional Component of the Arabidopsis APX1 Gene Promoter

1998 ◽  
Vol 118 (3) ◽  
pp. 1005-1014 ◽  
Author(s):  
Sergei Storozhenko ◽  
Pascal De Pauw ◽  
Marc Van Montagu ◽  
Dirk Inzé ◽  
Sergei Kushnir
1991 ◽  
Vol 11 (7) ◽  
pp. 3504-3514
Author(s):  
N F Cunniff ◽  
J Wagner ◽  
W D Morgan

We investigated the recognition of the conserved 5-bp repeated motif NGAAN, which occurs in heat shock gene promoters of Drosophila melanogaster and other eukaryotic organisms, by human heat shock transcription factor (HSF). Extended heat shock element mutants of the human HSP70 gene promoter, containing additional NGAAN blocks flanking the original element, showed significantly higher affinity than the wild-type promoter element for human HSF in vitro. Protein-DNA contact positions were identified by hydroxyl radical protection, diethyl pyrocarbonate interference, and DNase I footprinting. New contacts in the mutant HSE constructs corresponded to the locations of additional NGAAN motifs. The pattern of binding indicated the occurrence of multiple DNA binding modes for HSF with the various constructs and was consistent with an oligomeric, possibly trimeric, structure of the protein. In contrast to the improved binding, the extended heat shock element mutant constructs did not exhibit dramatically increased heat-inducible transcription in transient expression assays with HeLa cells.


2003 ◽  
Vol 50 (2) ◽  
pp. 535-541 ◽  
Author(s):  
Wiesława Widłak ◽  
Konrad Benedyk ◽  
Natallia Vydra ◽  
Magdalena Głowala ◽  
Dorota Scieglińska ◽  
...  

Heat shock activates in somatic cells a set of genes encoding heat shock proteins which function as molecular chaperones. The basic mechanism by which these genes are activated is the interaction of the specific transcription factor HSF1 with a regulatory DNA sequence called heat shock element (HSE). In higher eukaryotes HSF1 is present in unstressed cells as inactive monomers which, in response to cellular stress, aggregate into transcriptionally competent homotrimers. In the present paper we showed that the expression of a transgene encoding mutated constitutively active HSF1 placed under the control of a spermatocyte-specific promoter derived from the hst70 gene severely affects spermatogenesis. We found the testes of transgenic mice to be significantly smaller than those of wild-type males and histological analysis showed massive degeneration of the seminiferous epithelium. The lumen of tubules was devoid of spermatids and spermatozoa and using the TUNEL method we demonstrated a high rate of spermatocyte apoptosis. The molecular mechanism by which constitutively active HSF1 arrests spermatogenesis is not known so far. One can assume that HSF1 can either induce or repress so far unknown target genes involved in germ cell apoptosis.


Blood ◽  
1996 ◽  
Vol 87 (12) ◽  
pp. 5074-5084 ◽  
Author(s):  
S Okinaga ◽  
K Takahashi ◽  
K Takeda ◽  
M Yoshizawa ◽  
H Fujita ◽  
...  

Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1–0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1–0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.


1998 ◽  
Vol 13 (4) ◽  
pp. 227-235 ◽  
Author(s):  
M.K. Bolla ◽  
G.J. Miller ◽  
D.M. Yellon ◽  
A. Evans ◽  
G. Luc ◽  
...  

Heat shock proteins (HSP) are induced during coronary ischaemia, and abnormal expression of one HSP gene may cause hypertension in rats, We examined association of a promoter polymorphism in the major stress-inducible hsp70 gene (hsp70-1 or HSP70A1) on chromosome 6 (p21.3) with coronary disease traits, This C→A base substitution (AAACCCC) is at nucleotide position -110 in the heat shock transcription factor binding site (heat shock element, HSE). The first study sample (ECTIM), recruited from Belfast and three centres in France, consisted of 578 myocardial infarction cases and 698 agematched controls. The frequency of the A-110allele was 0.381 (95% CI=0.35-0.41) and 0.384 (95% CI=0.36-0.41) in cases and controls respectively, Homozygotes for the rarer A-110allele had a higher BMI (27.3 kg/m2±3.9) compared with homozygotes for the common C-110allele (26.3 kg/m2±3.3), The rarer homozygotes were shorter and heavier than the common homozygotes. A follow-up study involved 1431 healthy, middle aged men from the UK (NPHSII group). The frequency of the A-110allele was 0.385 (95% CI=0.37 -0.40), and there was no association of genotype with BMI. Thus there appears to be no strong association of the Hsp70-1 promoter polymorphism with risk of myocardial infarction, BMI or any coronary disease traits analysed here.


1991 ◽  
Vol 11 (7) ◽  
pp. 3504-3514 ◽  
Author(s):  
N F Cunniff ◽  
J Wagner ◽  
W D Morgan

We investigated the recognition of the conserved 5-bp repeated motif NGAAN, which occurs in heat shock gene promoters of Drosophila melanogaster and other eukaryotic organisms, by human heat shock transcription factor (HSF). Extended heat shock element mutants of the human HSP70 gene promoter, containing additional NGAAN blocks flanking the original element, showed significantly higher affinity than the wild-type promoter element for human HSF in vitro. Protein-DNA contact positions were identified by hydroxyl radical protection, diethyl pyrocarbonate interference, and DNase I footprinting. New contacts in the mutant HSE constructs corresponded to the locations of additional NGAAN motifs. The pattern of binding indicated the occurrence of multiple DNA binding modes for HSF with the various constructs and was consistent with an oligomeric, possibly trimeric, structure of the protein. In contrast to the improved binding, the extended heat shock element mutant constructs did not exhibit dramatically increased heat-inducible transcription in transient expression assays with HeLa cells.


1988 ◽  
Vol 16 (4) ◽  
pp. 1333-1348 ◽  
Author(s):  
P.W. Piper ◽  
B. Curran ◽  
M.W. Davies ◽  
K. Hirst ◽  
A. Lockheart ◽  
...  

2006 ◽  
Vol 395 (1) ◽  
pp. 223-231 ◽  
Author(s):  
Fabien Loison ◽  
Laure Debure ◽  
Philippe Nizard ◽  
Pascale le Goff ◽  
Denis Michel ◽  
...  

Clusterin is a secreted protein chaperone up-regulated in several pathologies, including cancer and neurodegenerative diseases. The present study shows that accumulation of aberrant proteins, caused by the proteasome inhibitor MG132 or the incorporation of the amino acid analogue AZC (L-azetidine-2-carboxylic acid), increased both clusterin protein and mRNA levels in the human glial cell line U-251 MG. Consistently, MG132 treatment was capable of stimulating a 1.3 kb clusterin gene promoter. Promoter deletion and mutation studies revealed a critical MG132-responsive region between −218 and −106 bp, which contains a particular heat-shock element, named CLE for ‘clusterin element’. Gel mobility-shift assays demonstrated that MG132 and AZC treatments induced the formation of a protein complex that bound to CLE. As shown by supershift and chromatin-immunoprecipitation experiments, CLE is bound by HSF1 (heat-shock factor 1) and HSF2 upon proteasome inhibition. Furthermore, co-immunoprecipitation assays indicated that these two transcription factors interact. Gel-filtration analyses revealed that the HSF1–HSF2 heterocomplexes bound to CLE after proteasome inhibition have the same apparent mass as HSF1 homotrimers after heat shock, suggesting that HSF1 and HSF2 could heterotrimerize. Therefore these studies indicate that the clusterin is a good candidate to be part of a cellular defence mechanism against neurodegenerative diseases associated with misfolded protein accumulation or decrease in proteasome activity.


1994 ◽  
Vol 14 (11) ◽  
pp. 7557-7568 ◽  
Author(s):  
J Zuo ◽  
R Baler ◽  
G Dahl ◽  
R Voellmy

Heat stress regulation of human heat shock genes is mediated by human heat shock transcription factor hHSF1, which contains three 4-3 hydrophobic repeats (LZ1 to LZ3). In unstressed human cells (37 degrees C), hHSF1 appears to be in an inactive, monomeric state that may be maintained through intramolecular interactions stabilized by transient interaction with hsp70. Heat stress (39 to 42 degrees C) disrupts these interactions, and hHSF1 homotrimerizes and acquires heat shock element DNA-binding ability. hHSF1 expressed in Xenopus oocytes also assumes a monomeric, non-DNA-binding state and is converted to a trimeric, DNA-binding form upon exposure of the oocytes to heat shock (35 to 37 degrees C in this organism). Because endogenous HSF DNA-binding activity is low and anti-hHSF1 antibody does not recognize Xenopus HSF, we employed this system for mapping regions in hHSF1 that are required for the maintenance of the monomeric state. The results of mutagenesis analyses strongly suggest that the inactive hHSF1 monomer is stabilized by hydrophobic interactions involving all three leucine zippers which may form a triple-stranded coiled coil. Trimerization may enable the DNA-binding function of hHSF1 by facilitating cooperative binding of monomeric DNA-binding domains to the heat shock element motif. This view is supported by observations that several different LexA DNA-binding domain-hHSF1 chimeras bind to a LexA-binding site in a heat-regulated fashion, that single amino acid replacements disrupting the integrity of hydrophobic repeats render these chimeras constitutively trimeric and DNA binding, and that LexA itself binds stably to DNA only as a dimer but not as a monomer in our assays.


Sign in / Sign up

Export Citation Format

Share Document