constitutively active
Recently Published Documents


TOTAL DOCUMENTS

1354
(FIVE YEARS 132)

H-INDEX

103
(FIVE YEARS 5)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
A. Joseph Bloom ◽  
Xianrong Mao ◽  
Amy Strickland ◽  
Yo Sasaki ◽  
Jeffrey Milbrandt ◽  
...  

Abstract Background In response to injury, neurons activate a program of organized axon self-destruction initiated by the NAD+ hydrolase, SARM1. In healthy neurons SARM1 is autoinhibited, but single amino acid changes can abolish autoinhibition leading to constitutively active SARM1 enzymes that promote degeneration when expressed in cultured neurons. Methods To investigate whether naturally occurring human variants might disrupt SARM1 autoinhibition and potentially contribute to risk for neurodegenerative disease, we assayed the enzymatic activity of all 42 rare SARM1 alleles identified among 8507 amyotrophic lateral sclerosis (ALS) patients and 9671 controls. We then intrathecally injected mice with virus expressing SARM1 constructs to test the capacity of an ALS-associated constitutively active SARM1 variant to promote neurodegeneration in vivo. Results Twelve out of 42 SARM1 missense variants or small in-frame deletions assayed exhibit constitutive NADase activity, including more than half of those that are unique to the ALS patients or that occur in multiple patients. There is a > 5-fold enrichment of constitutively active variants among patients compared to controls. Expression of constitutively active ALS-associated SARM1 alleles in cultured dorsal root ganglion (DRG) neurons is pro-degenerative and cytotoxic. Intrathecal injection of an AAV expressing the common SARM1 reference allele is innocuous to mice, but a construct harboring SARM1V184G, the constitutively active variant found most frequently among the ALS patients, causes axon loss, motor dysfunction, and sustained neuroinflammation. Conclusions These results implicate rare hypermorphic SARM1 alleles as candidate genetic risk factors for ALS and other neurodegenerative conditions.


Author(s):  
Courtney E Petersen ◽  
Benjamin A Tripoli ◽  
Todd A Schoborg ◽  
Jeremy T Smyth

Heart failure is often preceded by pathological cardiac hypertrophy, a thickening of the heart musculature driven by complex gene regulatory and signaling processes. The Drosophila heart has great potential as a genetic model for deciphering the underlying mechanisms of cardiac hypertrophy. However, current methods for evaluating hypertrophy of the Drosophila heart are laborious and difficult to carry out reproducibly. Here we demonstrate that micro-computerized tomography (microCT) is an accessible, highly reproducible method for non-destructive, quantitative analysis of Drosophila heart morphology and size. To validate our microCT approach for analyzing Drosophila cardiac hypertrophy, we show that expression of constitutively active Ras (Ras85DV12), previously shown to cause hypertrophy of the fly heart, results in significant thickening of both adult and larval heart walls when measured from microCT images. We then show using microCT analysis that genetic upregulation of store-operated Ca2+ entry (SOCE) driven by expression of constitutively active Stim (StimCA) or Orai (OraiCA) proteins also results in significant hypertrophy of the Drosophila heart, through a process that specifically depends on Orai Ca2+ influx channels. Intravital imaging of heart contractility revealed significantly reduced end diastolic and systolic dimensions in StimCA and OraiCA expressing hearts, consistent with the hypertrophic phenotype. These results demonstrate that increased SOCE activity is an important driver of hypertrophic cardiomyocyte growth, and demonstrate how microCT analysis combined with tractable genetic tools in Drosophila can be used to delineate molecular signaling processes that underlie cardiac hypertrophy and heart failure.


2021 ◽  
Vol 23 (1) ◽  
pp. 162
Author(s):  
Yu-Shan Lin ◽  
Yi-Hsin Lin ◽  
MyHang Nguyen Thi ◽  
Shih-Chuan Hsiao ◽  
Wen-Tai Chiu

The dysregulation of store-operated Ca2+ entry (SOCE) promotes cancer progression by changing Ca2+ levels in the cytosol or endoplasmic reticulum. Stromal interaction molecule 1 (STIM1), a component of SOCE, is upregulated in several types of cancer and responsible for cancer cell migration, invasion, and metastasis. To explore the impact of STIM1-mediated SOCE on the turnover of focal adhesion (FA) and cell migration, we overexpressed the wild-type and constitutively active or dominant negative variants of STIM1 in an osteosarcoma cell line. In this study, we hypothesized that STIM1-mediated Ca2+ elevation may increase cell migration. We found that constitutively active STIM1 dramatically increased the Ca2+ influx, calpain activity, and turnover of FA proteins, such as the focal adhesion kinase (FAK), paxillin, and vinculin, which impede the cell migration ability. In contrast, dominant negative STIM1 decreased the turnover of FA proteins as its wild-type variant compared to the cells without STIM1 overexpression while promoting cell migration. These unexpected results suggest that cancer cells need an appropriate amount of Ca2+ to control the assembly and disassembly of focal adhesions by regulating calpain activity. On the other hand, overloaded Ca2+ results in excessive calpain activity, which is not beneficial for cancer metastasis.


2021 ◽  
Vol 22 (23) ◽  
pp. 13064
Author(s):  
Madalena C. Pinto ◽  
Margarida C. Quaresma ◽  
Iris A. L. Silva ◽  
Violeta Railean ◽  
Sofia S. Ramalho ◽  
...  

SLC26A9, a constitutively active Cl− transporter, has gained interest over the past years as a relevant disease modifier in several respiratory disorders including Cystic Fibrosis (CF), asthma, and non-CF bronchiectasis. SLC26A9 contributes to epithelial Cl− secretion, thus preventing mucus obstruction under inflammatory conditions. Additionally, SLC26A9 was identified as a CF gene modifier, and its polymorphisms were shown to correlate with the response to drugs modulating CFTR, the defective protein in CF. Here, we aimed to investigate the relationship between SLC26A9 and CFTR, and its role in CF pathogenesis. Our data show that SLC26A9 expression contributes to enhanced CFTR expression and function. While knocking-down SLC26A9 in human bronchial cells leads to lower wt- and F508del-CFTR expression, function, and response to CFTR correctors, the opposite occurs upon its overexpression, highlighting SLC26A9 relevance for CF. Accordingly, F508del-CFTR rescue by the most efficient correctors available is further enhanced by increasing SLC26A9 expression. Interestingly, SLC26A9 overexpression does not increase the PM expression of non-F508del CFTR traffic mutants, namely those unresponsive to corrector drugs. Altogether, our data indicate that SLC26A9 stabilizes CFTR at the ER level and that the efficacy of CFTR modulator drugs may be further enhanced by increasing its expression.


2021 ◽  
pp. 113961
Author(s):  
Thomas J. Campion ◽  
Imran S. Sheikh ◽  
Rupert D. Smit ◽  
Philip H. Iffland ◽  
Jie Chen ◽  
...  

Blood ◽  
2021 ◽  
Author(s):  
Kieron South ◽  
Ohud Saleh ◽  
Eloise Lemarchand ◽  
Graham Coutts ◽  
Craig J Smith ◽  
...  

Advances in our understanding of ADAMTS13 structure, and the conformation changes required for full activity, have rejuvenated the possibility of its use as a thrombolytic therapy. We have tested a novel Ala1144Val ADAMTS13 variant (caADAMTS13) which exhibits constitutive activity, characterised using in vitro assays of ADAMTS13 activity, and greatly enhanced thrombolytic activity in two murine models of ischaemic stroke, the distal FeCl3 MCAo model and tMCAO with systemic inflammation and ischaemia/reperfusion injury. The primary measure of efficacy in both models was restoration of rCBF to the MCA territory which was determined using laser speckle contrast imaging. The caADAMTS13 variant exhibited a constitutively active conformation and a 5-fold enhanced activity against FRETS-VWF73 compared to wild type (wt)ADAMTS13. Moreover, caADAMTS13 inhibited VWF-mediated platelet capture at sub-physiological concentrations and enhanced t-PA/plasmin lysis of fibrin(ogen), neither of which were observed with wtADAMTS13. Significant restoration of rCBF and reduced lesion volume was observed in animals treated with caADAMTS13. When administered 1 h after FeCl3 MCAo the caADAMTS13 variant significantly reduced residual VWF and fibrin deposits in the MCA, platelet aggregate formation and neutrophil recruitment. When administered 4 h after reperfusion in the tMCAo model the caADAMTS13 variant induced a significant dissolution of platelet aggregates and a reduction in the resulting tissue hypoperfusion. The caADAMTS13 variant represents a potentially viable therapeutic option for the treatment of acute ischaemic stroke, amongst other thrombotic indications, due to its enhanced in vitro and in vivo activities that result from its constitutively active conformation.


Author(s):  
Hamed Masoumzadeh ◽  
Nasrin Hoseinzad ◽  
Sevda Jafari ◽  
Ali Shayanfar ◽  
Haleh Vaez ◽  
...  

Background: STAT3 is an oncogenic signaling pathway found constitutively active in many types of human malignancies and plays a key role in cancer progression. Stattic is a small molecule, which selectively inhibits SH2 domain of STAT3. In most of the studies, stattic has been proposed as a promising strategy for inhibition of STAT3 in cancer cells harboring constitutively active STAT3. However, lack of proper formulation due to the poor water solubility and low bioavailability of stattic is a major limitation for its usage in clinic. The aim of this project was to develop poly(ethylene glycole)-block-poly(caprolactone) (PEG-b-PCL)-based polymeric micelles loaded with stattic and evaluate drug encapsulation efficiency and release in the developed formulations. Methods: In this experimental study, to prepare stattic loaded micellar formulations, co-solvent evaporation method was used. Mean diameter and polydispersity index (PDI) of micelles were defined by light scattering method. Encapsulated drug levels were measured using high performance liquid chromatography (HPLC). Data were analyzed using Graph pad prism software through one-way ANOVA analysis of variance. Results: Stattic was loaded in the polymeric micelles with encapsulation efficiency ranging from 40 to 73%. Drug loaded micelles were measured between 90 to 130 nm in size. PDI was obtained 0.3-1 and encapsulation of stattic in Polyethylene glycol-block-poly(α-benzyl carboxylate ε-caprolactone(PEG-b-PBCL) micellar formulation resulted in more than 6-fold increase in the water solubility of stattic (0.36 vs. 0.06 mg/mL). Respecting to high encapsulation efficiency, two micellar formulations were selected for further analysis that both of them released 70-80% of drug within the first hour, indicated burst release of drug. Conclusion: These findings show that PEG-b-PBCL copolymers can be a suitable vehicle for solubilization of stattic.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1361
Author(s):  
Scott E. Roffey ◽  
David W. Litchfield

The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer′s and Parkinson’s diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.


Sign in / Sign up

Export Citation Format

Share Document