scholarly journals Toward the Analysis of the Petunia MADS Box Gene Family by Reverse and Forward Transposon Insertion Mutagenesis Approaches: B, C, and D Floral Organ Identity Functions Require SEPALLATA-Like MADS Box Genes in Petunia

2003 ◽  
Vol 15 (11) ◽  
pp. 2680-2693 ◽  
Author(s):  
Michiel Vandenbussche ◽  
Jan Zethof ◽  
Erik Souer ◽  
Ronald Koes ◽  
Giovanni B. Tornielli ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia Moschin ◽  
Sebastiano Nigris ◽  
Ignacio Ezquer ◽  
Simona Masiero ◽  
Stefano Cagnin ◽  
...  

Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.


1996 ◽  
Vol 10 (4) ◽  
pp. 663-677 ◽  
Author(s):  
Brendan Davies ◽  
Alexandra Rosa ◽  
Tinka Eneva ◽  
Heinz Saedler ◽  
Hans Sommer

2017 ◽  
Vol 8 ◽  
Author(s):  
Yingjun Chi ◽  
Tingting Wang ◽  
Guangli Xu ◽  
Hui Yang ◽  
Xuanrui Zeng ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1805
Author(s):  
Tareq Alhindi ◽  
Ayed M. Al-Abdallat

The MADS-box gene family encodes a number of transcription factors that play key roles in various plant growth and development processes from response to environmental cues to cell differentiation and organ identity, especially the floral organogenesis, as in the prominent ABCDE model of flower development. Recently, the genome of American beautyberry (Callicarpa americana) has been sequenced. It is a shrub native to the southern region of United States with edible purple-colored berries; it is a member of the Lamiaceae family, a family of medical and agricultural importance. Seventy-eight MADS-box genes were identified from 17 chromosomes of the C. americana assembled genome. Peptide sequences blast and analysis of phylogenetic relationships with MADS-box genes of Sesame indicum, Solanum lycopersicum, Arabidopsis thaliana, and Amborella trichopoda were performed. Genes were separated into 32 type I and 46 type II MADS-box genes. C. americana MADS-box genes were clustered into four groups: MIKCC, MIKC*, Mα-type, and Mγ-type, while the Mβ-type group was absent. Analysis of the gene structure revealed that from 1 to 15 exons exist in C. americana MADS-box genes. The number of exons in type II MADS-box genes (5–15) greatly exceeded the number in type I genes (1–9). The motif distribution analysis of the two types of MADS-box genes showed that type II MADS-box genes contained more motifs than type I genes. These results suggested that C. americana MADS-box genes type II had more complex structures and might have more diverse functions. The role of MIKC-type MADS-box genes in flower and fruit development was highlighted when the expression profile was analyzed in different organs transcriptomes. This study is the first genome-wide analysis of the C. americana MADS-box gene family, and the results will further support any functional and evolutionary studies of C. americana MADS-box genes and serve as a reference for related studies of other plants in the medically important Lamiaceae family.


2009 ◽  
Vol 21 (10) ◽  
pp. 3008-3025 ◽  
Author(s):  
Shinnosuke Ohmori ◽  
Mayumi Kimizu ◽  
Maiko Sugita ◽  
Akio Miyao ◽  
Hirohiko Hirochika ◽  
...  

Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 765-783 ◽  
Author(s):  
Elena M Kramer ◽  
Robert L Dorit ◽  
Vivian F Irish

Abstract The specification of floral organ identity in the higher dicots depends on the function of a limited set of homeotic genes, many of them members of the MADS-box gene family. Two such genes, APETALA3 (AP3) and PISTILLATA (PI), are required for petal and stamen identity in Arabidopsis; their orthologs in Antirrhinum exhibit similar functions. To understand how changes in these genes may have influenced the morphological evolution of petals and stamens, we have cloned twenty-six homologs of the AP3 and PI genes from two higher eudicot and eleven lower eudicot and magnolid dicot species. The sequences of these genes reveal the presence of characteristic PI- and AP3-specific motifs. While the PI-specific motif is found in all of the PI genes characterized to date, the lower eudicot and magnolid dicot AP3 homologs contain distinctly different motifs from those seen in the higher eudicots. An analysis of all the available AP3 and PI sequences uncovers multiple duplication events within each of the two gene lineages. A major duplication event in the AP3 lineage coincides with the base of the higher eudicot radiation and may reflect the evolution of a petal-specific AP3 function in the higher eudicot lineage.


2011 ◽  
Vol 52 (9) ◽  
pp. 1515-1531 ◽  
Author(s):  
Zhao-Jun Pan ◽  
Chih-Chin Cheng ◽  
Wen-Chieh Tsai ◽  
Mei-Chu Chung ◽  
Wen-Huei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document