Temporal Relationship between the Transcription of Two Arabidopsis MADS Box Genes and the Floral Organ Identity Genes

1995 ◽  
Vol 7 (6) ◽  
pp. 721 ◽  
Author(s):  
Beth Savidge ◽  
Steven D. Rounsley ◽  
Martin F. Yanofsky
1996 ◽  
Vol 10 (4) ◽  
pp. 663-677 ◽  
Author(s):  
Brendan Davies ◽  
Alexandra Rosa ◽  
Tinka Eneva ◽  
Heinz Saedler ◽  
Hans Sommer

2011 ◽  
Vol 52 (9) ◽  
pp. 1515-1531 ◽  
Author(s):  
Zhao-Jun Pan ◽  
Chih-Chin Cheng ◽  
Wen-Chieh Tsai ◽  
Mei-Chu Chung ◽  
Wen-Huei Chen ◽  
...  

Nature ◽  
2000 ◽  
Vol 405 (6783) ◽  
pp. 200-203 ◽  
Author(s):  
Soraya Pelaz ◽  
Gary S. Ditta ◽  
Elvira Baumann ◽  
Ellen Wisman ◽  
Martin F. Yanofsky

2021 ◽  
Vol 12 ◽  
Author(s):  
Silvia Moschin ◽  
Sebastiano Nigris ◽  
Ignacio Ezquer ◽  
Simona Masiero ◽  
Stefano Cagnin ◽  
...  

Nymphaeaceae are early diverging angiosperms with large flowers characterized by showy petals and stamens not clearly whorled but presenting a gradual morphological transition from the outer elements to the inner stamens. Such flower structure makes these plant species relevant for studying flower evolution. MADS-domain transcription factors are crucial components of the molecular network that controls flower development. We therefore isolated and characterized MADS-box genes from the water lily Nymphaea caerulea. RNA-seq experiments on floral buds have been performed to obtain the transcript sequences of floral organ identity MADS-box genes. Maximum Likelihood phylogenetic analyses confirmed their belonging to specific MADS-box gene subfamilies. Their expression was quantified by RT-qPCR in all floral organs at two stages of development. Protein interactions among these transcription factors were investigated by yeast-two-hybrid assays. We found especially interesting the involvement of two different AGAMOUS-like genes (NycAG1 and NycAG2) in the water lily floral components. They were therefore functionally characterized by complementing Arabidopsis ag and shp1 shp2 mutants. The expression analysis of MADS-box genes across flower development in N. caerulea described a complex scenario made of numerous genes in numerous floral components. Their expression profiles in some cases were in line with what was expected from the ABC model of flower development and its extensions, while in other cases presented new and interesting gene expression patterns, as for instance the involvement of NycAGL6 and NycFL. Although sharing a high level of sequence similarity, the two AGAMOUS-like genes NycAG1 and NycAG2 could have undergone subfunctionalization or neofunctionalization, as only one of them could partially restore the euAG function in Arabidopsis ag-3 mutants. The hereby illustrated N. caerulea MADS-box gene expression pattern might mirror the morphological transition from the outer to the inner floral organs, and the presence of transition organs such as the petaloid stamens. This study is intended to broaden knowledge on the role and evolution of floral organ identity genes and the genetic mechanisms causing biodiversity in angiosperm flowers.


2006 ◽  
Vol 6 ◽  
pp. 1933-1944 ◽  
Author(s):  
Wen-Chieh Tsai ◽  
Hong-Hwa Chen

Orchids are known for both their floral diversity and ecological strategies. The versatility and specialization in orchid floral morphology, structure, and physiological properties have fascinated botanists for centuries. In floral studies, MADS-box genes contributing to the now famous ABCDE model of floral organ identity control have dominated conceptual thinking. The sophisticated orchid floral organization offers an opportunity to discover new variant genes and different levels of complexity to the ABCDE model. Recently, several remarkable research studies done on orchid MADS-box genes have revealed the important roles on orchid floral development. Knowledge about MADS-box genes’' encoding ABCDE functions in orchids will give insights into the highly evolved floral morphogenetic networks of orchids.


2012 ◽  
Vol 160 (2) ◽  
pp. 788-807 ◽  
Author(s):  
Xianchun Sang ◽  
Yunfeng Li ◽  
Zengke Luo ◽  
Deyong Ren ◽  
Likui Fang ◽  
...  

2017 ◽  
Vol 8 ◽  
Author(s):  
Yingjun Chi ◽  
Tingting Wang ◽  
Guangli Xu ◽  
Hui Yang ◽  
Xuanrui Zeng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document