Characterization of an anomaly in the crystallographic orientation of plate-like carbides precipitated in a wrought Ni-base superalloy
Face-centred cubic Cr-rich carbide is known to precipitate in a face-centred cubic matrix with a cube–cube orientation relationship, thereby minimizing the elastic strain energy. In the present study, for the first time, the precipitation was observed of an abnormal Cr-rich carbide, which did not have the cube–cube orientation relationship in its face-centred cubic matrix. The abnormally oriented carbides nucleated and grew around random grain boundaries, and were observed to have a lamellar or plate-like morphology. The crystallographic orientation anomaly was characterized by measuring the tilt angles of the three crystal poles of the matrices, carbides and adjacent grains, using a transmission electron microscope to find the closest coincidence site lattice boundary. The carbides showed a slight deviation from a cube–cube orientation with adjacent grains and did not present any particular orientational relationship with the matrix. The deviation angles from coincidence site lattice boundaries between the matrices and carbides were smaller than those between matrices and adjacent grains. The abnormally oriented carbides appeared to nucleate on adjacent grains, and underwent a rotation within the matrix during the initial stage of growth to release the phase boundary energy between the carbides and the matrix.