kikuchi pattern
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Aimo Winkelmann ◽  
Gert Nolze ◽  
Grzegorz Cios ◽  
Tomasz Tokarski ◽  
Piotr Bała ◽  
...  
Keyword(s):  

2021 ◽  
Vol 7 (20) ◽  
pp. eabg0868
Author(s):  
Ulrich Burkhardt ◽  
Aimo Winkelmann ◽  
Horst Borrmann ◽  
Andreea Dumitriu ◽  
Markus König ◽  
...  

The assignment of enantiomorphs by diffraction methods shows fundamental differences for x-rays and electrons. This is particularly evident for the chiral allotrope of β-Mn. While it is not possible to determine the sense of chirality of β-Mn with established x-ray diffraction methods, Kikuchi pattern simulation of the enantiomorphs reveals differences, if dynamical electron diffraction is considered. Quantitative comparison between experimental and simulated Kikuchi patterns allows the spatially resolved assignment of the enantiomorph in polycrystalline materials of β-Mn, as well as the structurally strongly related phase Pt2Cu3B. On the basis of enantiomorph distribution maps, crystals were extracted from enantiopure domains by micropreparation techniques. The x-ray diffraction analyses confirm the assignment of the Kikuchi pattern evaluations for Pt2Cu3B and do not allow to distinguish between the enantiomorphs of β-Mn.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.


2019 ◽  
Vol 25 (4) ◽  
pp. 912-923 ◽  
Author(s):  
Chaoyi Zhu ◽  
Kevin Kaufmann ◽  
Kenneth Vecchio

AbstractAn automated approach to fully reconstruct spherical Kikuchi maps from experimentally collected electron backscatter diffraction patterns and overlay each pattern onto its corresponding position on a simulated Kikuchi sphere is presented in this study. This work demonstrates the feasibility of warping any Kikuchi pattern onto its corresponding location of a simulated Kikuchi sphere and reconstructing a spherical Kikuchi map of a known phase based on any set of experimental patterns. This method consists of the following steps after pattern collection: (1) pattern selection based on multiple threshold values; (2) extraction of multiple scan parameters and phase information; (3) generation of a kinematically simulated Kikuchi sphere as the “skeleton” of the spherical Kikuchi map; and (4) overlaying the inverse gnomonic projection of multiple selected patterns after appropriate pattern center calibration and refinement. The proposed method is the first automated approach to reconstructing spherical Kikuchi maps from experimental Kikuchi patterns. It potentially enables more accurate orientation calculation, new pattern center refinement methods, improved dictionary-based pattern matching, and phase identification in the future.


2018 ◽  
Vol 2 (12) ◽  
Author(s):  
Aimo Winkelmann ◽  
Gert Nolze ◽  
Grzegorz Cios ◽  
Tomasz Tokarski

Author(s):  
Hayato Sakamoto ◽  
Ken Suzuki ◽  
Hideo Miura

Ni-base superalloys are widely used for various power plants and jet engines. Since the operating temperature of thermal plants and equipment has been increasing to improve their thermal efficiency for decreasing the emission of carbon-dioxide, the initially designed microstructure was found to change gradually during their operation. Since this change of microstructure should deteriorate the strength of the materials, sudden unexpected fracture should occur during the operation of the plants and equipment. Therefore, it is very important to clarify the dominant factor of the change of the microstructure and the relationship between the microstructure and its strength for assuring the stable and reliable operation of the plants and equipment. In this study, the change of the strength of a grain and a grain boundary of Ni-base superalloys caused by the change of their microstructure was measured by using a micro tensile test system in a scanning ion microscope. A creep test was applied to bulk alloys at elevated temperatures and a small test sample was cut from the bulk alloy with different microstructure caused by creep damage by using focused ion beams. The test sample was fixed to a silicon beam and a micro probe, respectively, by tungsten deposition. Finally, the test sample was thinned to 1μm and the sample was stretched to fracture at room temperature. The change of the order of atom arrangement of the sample was evaluated by applying electron back-scatter diffraction (EBSD) analysis quantitatively. In this study, the quality of grains in Ni-base superalloys was analyzed by using image quality (IQ) value calculated by using Hough transform of the observed Kikuchi pattern. It was found that the order of atom arrangement was deteriorated monotonically during the creep tests and this deterioration corresponded to the change of the microstructure clearly. Both the yield strength and the ultimate tensile strength of a grain in the alloys decreased drastically with the change of the microstructure, in other words, the IQ value of the grains. There was a clear relationship between the IQ value of a grain and its strength. Therefore, this IQ value is effective for evaluating the crystallinity of the alloys and the remained strength of the damaged alloys. The change of the microstructure was dominated by the strain-induced anisotropic accelerated diffusion of component elements of the alloys and the activation energy of the diffusion was determined quantitatively as a function of temperature and the applied stress.


2017 ◽  
Vol 52 (4) ◽  
pp. 1600288 ◽  
Author(s):  
Aimo Winkelmann

2017 ◽  
Vol 50 (1) ◽  
pp. 102-119 ◽  
Author(s):  
Gert Nolze ◽  
Aimo Winkelmann

Kikuchi diffraction patterns can provide fundamental information about the lattice metric of a crystalline phase. In order to improve the possible precision and accuracy of lattice parameter determination from the features observed in Kikuchi patterns, some useful fundamental relationships of geometric crystallography are reviewed, which hold true independently of the actual crystal symmetry. The Kikuchi band positions and intersections and the Kikuchi band widths are highly interrelated, which is illustrated by the fact that all lattice plane trace positions of the crystal are predetermined by the definition of only four traces. If, additionally, the projection centre of the gnomonic projection is known, the lattice parameter ratios and the angles between the basis vectors are fixed. A further definition of one specific Kikuchi band width is sufficient to set the absolute sizes of all lattice parameters and to predict the widths of all Kikuchi bands. The mathematical properties of the gnomonic projection turn out to be central to an improved interpretation of Kikuchi pattern data, emphasizing the importance of the exact knowledge of the projection centre.


2017 ◽  
Vol 123 ◽  
pp. 328-338 ◽  
Author(s):  
Maarten Vos ◽  
Aimo Winkelmann
Keyword(s):  

2015 ◽  
Vol 48 (5) ◽  
pp. 1405-1419 ◽  
Author(s):  
G. Nolze ◽  
C. Grosse ◽  
A. Winkelmann

Different models of Kikuchi pattern formation are compared with respect to their applicability to noncentrosymmetric crystals, and the breakdown of Friedel's rule in experimental electron backscatter diffraction (EBSD) patterns is discussed. DifferentAIIIBVsemiconductor materials are used to evaluate the resulting asymmetry of Kikuchi band profiles for polar lattice planes. By comparison with the characteristic etch pit morphology on a single-crystal surface, the polar character of the measured lattice planes can be assigned absolutely. The presented approach enables point-group-resolved orientation mapping, which goes beyond the commonly applied Laue group analysis in EBSD.


Sign in / Sign up

Export Citation Format

Share Document