Inclusion compounds of plant growth regulators in cyclodextrins. V. 4-Chlorophenoxyacetic acid encapsulated in β-cyclodextrin and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin

2005 ◽  
Vol 61 (2) ◽  
pp. 207-217 ◽  
Author(s):  
Frantzeska Tsorteki ◽  
Kostas Bethanis ◽  
Nikos Pinotsis ◽  
Petros Giastas ◽  
Dimitris Mentzafos

The crystal structures of 4-chlorophenoxyacetic acid (4CPA) included in β-cyclodextrin (β-CD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TMβCD) have been studied by X-ray diffraction. The 4CPA/β-CD complex crystallizes as a head-to-head dimer in the space group C2 in the Tetrad packing mode. The packing modes of some β-CD dimeric complexes, having unique stackings, are also discussed. The 4CPA/TMβCD inclusion complex crystallizes in the space group P21 and its asymmetric unit contains two crystallographically independent complexes, complex A and complex B, exhibiting different conformations. The host molecule of complex A is significantly distorted, as a glucosidic residue rotated about the O4′—C1 and C4—O4 bonds forms an aperture where the guest molecule is accommodated. The phenyl moiety of the guest molecule of complex B is nearly perpendicular to the mean plane of the O4n atoms. The conformations of the guest molecules of the two complexes are similar. The crystal packing consists of antiparallel columns as in the majority of the TMβCD complexes published so far.

2003 ◽  
Vol 59 (2) ◽  
pp. 287-299 ◽  
Author(s):  
Petros Giastas ◽  
Konstantina Yannakopoulou ◽  
Irene M. Mavridis

The present investigation is part of an ongoing study on the influence of the long end-functonalized guest molecules DBA and BNZ in the crystal packing of β-cyclodextrin (βCD) dimeric complexes. The title compounds are 2:2 host:guest complexes showing limited host–guest hydrogen bonding at the primary faces of the βCD dimers. Within the βCD cavity the guests exhibit mutual π...π interactions and between βCD dimers perpendicular NH...π interactions. The DBA guest molecule exhibits one extended and two bent conformations in the complex. The BNZ guest molecule is not planar inside βCD, in contrast to the structure of BNZ itself, which indicates that the cavity isolates the molecules and forbids the π...π stacking of the aromatic rings. NMR spectroscopy studies show that in aqueous solution both DBA and BNZ form strong complexes that have 1:1 stoichiometry and structures similar to the solid state ones. The relative packing of the dimers is the same in both complexes. The axes of two adjacent dimers form an angle close to 20° and have a lateral displacement ≃2.45 Å, both of which characterize the screw-channel mode of packing. Although the βCD/BNZ complex indeed crystallizes in a space group characterizing the latter mode, the βCD/DBA complex crystallizes in a space group with novel dimensions not resembling any of the packing modes reported so far. The new lattice is attributed to the three conformations exhibited by the guest in the crystals. However, this lattice can be transformed into another, which is isostructural to that of the βCD/BNZ inclusion complex, if the conformation of the guest is not taken into account.


2014 ◽  
Vol 70 (8) ◽  
pp. 758-763 ◽  
Author(s):  
Bethany I. Harriss ◽  
Claire Wilson ◽  
Ivana Radosavljevic Evans

Structural studies have been carried out of two solid forms of niclosamide [5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide, NCL], a widely used anthelmintic drug, namely niclosamide methanol monosolvate, C13H8Cl2N2O4·CH3OH or NCL·MeOH, and niclosamide monohydrate, denoted HA. The structure of the methanol solvate obtained from single-crystal X-ray diffraction is reported for the first time, elucidating the key host–guest hydrogen-bonding interactions which lead to solvate formation. The essentially planar NCL host molecules interactviaπ-stacking and pack in a herringbone-type arrangement, giving rise to channels along the crystallographicaaxis in which the methanol guest molecules are located. The methanol and NCL molecules interactviashort O—H...O hydrogen bonds. Laboratory powder X-ray diffraction (PXRD) measurements reveal that the initially phase-pure NCL·MeOH solvate readily transforms into NCL monohydrate within hours under ambient conditions. PXRD further suggests that the NCL monohydrate, HA, is isostructural with the NCL·MeOH solvate. This is consistent with the facile transformation of the methanol solvate into the hydrate when stored in air. The crystal packing and the topology of guest-molecule inclusion are compared with those of other NCL solvates for which the crystal structures are known, giving a consistent picture which correlates well with known experimentally observed desolvation properties.


2011 ◽  
Vol 89 (7) ◽  
pp. 854-862
Author(s):  
Glenn A. Facey ◽  
Ilia Korobkov

The tri-ortho-thymotide (TOT) clathrates of dibromo- and dichloromethane were characterized by single crystal X-ray diffraction at 200 K and solid-state 2H NMR spectroscopy as a function of temperature. The host structure was found to be typical of other cage-type TOT clathrates. The X-ray results showed a substantial amount of disorder among the guest molecules. In both clathrates, multiple guest molecule positions could be modeled. The heavy atoms of all the guest molecule positions lie approximately in the same plane, with some out-of-plane distortion. The guest molecules were of two different types in positions symmetric about the crystallographic twofold rotation axis: type A guests, with carbon atoms well removed from the crystallographic twofold axis, and type B guests, with carbon atoms very close to the twofold axis. The 2H NMR spectra for the guests confirmed that the disorder was dynamic. The experimental results could be accounted for by the presence of three simultaneous types of molecular motion, all fast with respect to the 2H quadrupolar interaction: (i) twofold molecular flips about the molecular C2 symmetry axis, (ii) exchange between the type A and type B sites in a single plane, and (iii) a two-site libration of the plane containing the heavy atoms of the A and B guest sites with a temperature-dependent amplitude.


2020 ◽  
Author(s):  
Minjun Cha

<p>Recently, several alkylamine hydrates have been studied in an effort to reveal the structural transitions from semi- to ‘canonical’ clathrate hydrate in the presence of secondary guest molecules. Trimethylamine (TMA) is known to form the semi-clathrate hydrate, and it has been reported that the structural transition of the TMA semi-clathrate hydrate may not occur in the presence of hydrogen gas as a secondary guest molecule. This paper reports the structural transition of trimethylamine(TMA) hydrate induced by the type of guest molecules. Powder X-ray diffraction patterns of (TMA + H<sub>2</sub>) hydrates show the formation of hexagoanl P6/mmm hydrate, but those of (TMA + CH<sub>4</sub>) hydrates indicate the formation of cubic Fd3m hydrate. Without gaseous guest molecule, the crystal structure of pure TMA hydrate is identified as hexagonal P6/mmm. Therefore, inclusion of gaseous methane in TMA hydrate can induce the structural transition from hexagonal to cubic hydrate or the formation of metastable cubic hydrate. To clearly reveal this possibility, we also check the time-dependent structural patterns of binary (TMA + CH<sub>4</sub>) hydrates from 1 to 14 days, and the results show that the structural transition of TMA hydrate from hexagonal P6/mmm to cubic Fd3m hydrate structure can occur during the methane inclusion process.</p>


2020 ◽  
Vol 16 ◽  
pp. 2954-2959
Author(s):  
Xinru Sheng ◽  
Errui Li ◽  
Feihe Huang

We report novel pseudorotaxanes based on the complexation between pillar[4]arene[1]quinone and 1,10-dibromodecane. The complexation is found to have a 1:1 host–guest complexation stoichiometry in chloroform but a 2:1 host–guest complexation stoichiometry in the solid state. From single crystal X-ray diffraction, the linear guest molecules thread into cyclic pillar[4]arene[1]quinone host molecules in the solid state, stabilized by CH∙∙∙π interactions and hydrogen bonds. The bromine atoms at the periphery of the guest molecule provide convenience for the further capping of the pseudorotaxanes to construct rotaxanes.


Author(s):  
Sakuntala Gupta ◽  
Partha Pratim Das ◽  
Przemysław Kula ◽  
Emmanuele Parisi ◽  
Roberto Centore

The crystal structures of difluorine derivatives of p-terphenyls (nTm) have been determined by single-crystal X-ray diffraction. For the unsymmetrical substituted compounds 2′,3′-difluoro-4-methyl-p-terphenyl (1T0, C19H14F2) and 4-ethyl-2′,3′-difluoro-4′′-methyl-p-terphenyl (1T2, C21H18F2), the crystal structure is disordered, with molecules statistically entering the crystal in up and down orientations, with full superposition of all the atoms, except for those of the terminal groups (H/methyl for 1T0 and methyl/ethyl for 1T2). For triclinic 2′,3′-difluoro-4,4′′-dimethyl-p-terphenyl (1T1, C20H16F2), with the space group P\overline{1}, the two crystallographically independent molecules have the same conformation, which is different from monoclinic 1T0 (space group C2) and 1T2 (space group C2/c). A common feature of the conformation of the three compounds is the noncoplanar twisted arrangement of the three rings of the p-terphenyl moiety. Two-dimensional (2D) Hirshfeld fingerprint plots are consistent with H...H and C...H contacts in the crystal packing. For the three compounds, the phase behaviour has been investigated by POM (Petra/Osiris/Molinspiration) and differential scanning calorimetry (DSC) analysis. 1T2 is mesogenic, with enantiotropic nematic behaviour.


2020 ◽  
Vol 76 (7) ◽  
pp. 681-689
Author(s):  
Wojciech Nitek ◽  
Agnieszka Kania ◽  
Henryk Marona ◽  
Anna M. Waszkielewicz ◽  
Ewa Żesławska

Four crystal structures of 2-amino-N-(dimethylphenoxyethyl)propan-1-ol derivatives, characterized by X-ray diffraction analysis, are reported. The free base (R,S)-2-amino-N-[2-(2,3-dimethylphenoxy)ethyl]propan-1-ol, C13H21NO2, 1, crystallizes in the space group P21/n, with two independent molecules in the asymmetric unit. The hydrochloride, (S)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium chloride, C13H22NO2 +·Cl−, 2c, crystallizes in the space group P21, with one cation and one chloride anion in the asymmetric unit. The asymmetric unit of two salts of 2-picolinic acid, namely, (R,S)-N-[2-(2,3-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium pyridine-2-carboxylate, C13H22NO2 +·C6H4NO2 −, 1p, and (R)-N-[2-(2,6-dimethylphenoxy)ethyl]-1-hydroxypropan-2-aminium pyridine-2-carboxylate, C13H22NO2 +·C6H4NO2 −, 2p, consists of one cation and one 2-picolinate anion. Salt 1p crystallizes in the triclinic centrosymmetric space group P\overline 1, while salt 2p crystallizes in the space group P41212. The conformations of the amine fragments are contrasted and that of 2p is found to have an unusual antiperiplanar arrangement about the ether group. The crystal packing of 1 and 2c is dominated by hydrogen-bonded chains, while the structures of the 2-picolinate salts have hydrogen-bonded rings as the major features. In both salts with 2-picolinic acid, the specific R 1 2(5) hydrogen-bonding motif is observed. Structural studies have been enriched by the generation of fingerprint plots derived from Hirshfeld surfaces.


IUCrJ ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Maura Malinska

Calixarenes are host molecules that can form complexes with one or more guest molecules, and molecular recognition in calixarenes can be affected by many factors. With a view to establishing molecular recognition rules, the host p-tert-butylcalix[6]arene (TBC6) was crystallized with different guest molecules (cyclohexane, anisole, heptane, toluene, benzene, methyl acetate, ethyl acetate, dichloromethane, tetrahydrofuran and pyridine) and the obtained structures were characterized by X-ray diffraction. With most solvents, 1:1 and/or 1:3 host–guest complexes were formed, although other stoichiometries were also observed with small guest molecules, and crystallization from ethyl acetate produced the unsolvated form. The calculated fill percentage of the TBC6 cavity was ∼55% for apolar guests and significantly lower for polar solvents, indicating that polar molecules can bind to apolar cavities with significantly lower packing coefficients. The most stable crystals were formed by 1:1 host–guest inclusion complexes. The ratio between the apolar surface area and the volume was used to predict the formation of inclusion versus exclusion complexes, with inclusion complexes observed at ratios <40. These findings allow the binding of potential guest molecules to be predicted and a suitable crystal packing for the designed properties to be obtained.


1966 ◽  
Vol 44 (12) ◽  
pp. 1373-1385 ◽  
Author(s):  
H. G. McAdie

The endothermal decomposition of 18 β-quinol clathrates has been studied by thermo-analysis, calorimetry, and X-ray diffraction, and the decomposition process shown to be[Formula: see text]For those symmetrical guest molecules (M) which do not distort the β-quinol cavities from their normal dimensions, both temperatures and enthalpies of clathrate decomposition increase with increasing volume of the guest molecule. For those unsymmetrical guest species which require distortion of the cavities along their c-axis, temperatures and enthalpies of decomposition tend to decrease as the initial distortion required to accommodate the guest increases. Thermal stability of β-quinol clathrates is thus strongly influenced both by the size and shape of the guest molecule.The mechanism of thermal decomposition is suggested to involve a combination of the loss of stabilizing guest–wall interactions, together with increased thermal motion of the interpenetrating networks of hydrogen-bonded quinol molecules.


1998 ◽  
Vol 54 (4) ◽  
pp. 431-437 ◽  
Author(s):  
C. Tedesco ◽  
A. Immirzi ◽  
A. Proto

Crystals of Zr(p-CH2C6H4CMe3)4, tetra(4-tert-butylbenzyl)zirconium (1), have been studied by X-ray diffraction. The crystals belong to the tetragonal system, space group I4¯, with a = 16.481 (2), c = 7.131 (4) Å, so that chemically equivalent ligands are also structurally equivalent, unlike other known homoleptic M(CH2C6H5)4 compounds. Zr—CH2—C ipso bond angles of 90.0 (2)° suggest that ligands are η2-bonded. The structure is discussed along with that of Zr(CH2C6H5)4, tetrabenzylzirconium (2) (redetermined), which is crystallographically unsymmetrical but also of approximate S 4 symmetry. The distortion of (2) from tetragonal symmetry (the four Zr—CH2—C ipso bond angles being rather different) is discussed along with crystal packing.


Sign in / Sign up

Export Citation Format

Share Document