AbstractThree salts of the common composition [EuCl2(X-tpy)2][EuCl4(X-tpy)]·nMeCN were obtained from EuCl3·6H2O and the respective organic ligands (X-tpy = 4′-phenyl-2,2′:6′,2″-terpyridine ptpy, 4′-(pyridin-4-yl)-2,2′:6′,2″-terpyridine 4-pytpy, and 4′-(pyridin-3-yl)-2,2′:6′,2″-terpyridine 3-pytpy). These ionic complexes are examples of salts, in which both cation and anion contain Eu3+ with the same organic ligands and chlorine atoms coordinated. As side reaction, acetonitrile transforms into acetamide resulting in the crystallization of the complex [EuCl3(ptpy)(acetamide)] (4). Salts [EuCl2(ptpy)2][EuCl4(ptpy)]·2.34MeCN (1), [EuCl2(4-pytpy)2][EuCl4(4-pytpy)]·0.11MeCN (2), and [EuCl2(3-pytpy)2][EuCl4(3-pytpy)]·MeCN (3) crystallize in different structures (varying in space group and crystal packing) due to variation of the rear atom of the ligand to a coordinative site. Additionally, we show and compare structural variability through the dimeric complexes [Eu2Cl6(ptpy)2(N,N′-spacer)]·N,N′-spacer (5, 6, 7) obtained from [EuCl3(ptpy)(py)] by exchanging the end-on ligand pyridine with several bipyridines (4,4′-bipyridine bipy, 1,2-bis(4-pyridyl)ethane bpa, and 1,2-bis(2-pyridyl)ethylene bpe). In addition, photophysical (photoluminescence) and thermal properties are presented.