Medium-energy microprobe station at the SXRMB of the CLS

2017 ◽  
Vol 24 (1) ◽  
pp. 333-337 ◽  
Author(s):  
Qunfeng Xiao ◽  
Aimee Maclennan ◽  
Yongfeng Hu ◽  
Mark Hackett ◽  
Peter Leinweber ◽  
...  

Micro-XAFS and chemical imaging techniques have been widely applied for studies of heterogeneously distributed systems, mostly in hard X-ray (>5 keV) or in soft X-ray (<1.5 keV) energies. The microprobe endstation of the SXRMB (soft X-ray microcharacterization beamline) at the Canadian Light Source is optimized at the medium energy (1.7–5 keV), and it has been recently commissioned and is available for general users. The technical design and the performance (energy range, beam size and flux) of the SXRMB microprobe are presented. Examples in chemical imaging and micro-XAFS in the medium energy for important elements such as P, S and Ca for soil and biological samples are highlighted.

2018 ◽  
Vol 25 (3) ◽  
pp. 878-884 ◽  
Author(s):  
Hyun-Joon Shin ◽  
Namdong Kim ◽  
Hee-Seob Kim ◽  
Wol-Woo Lee ◽  
Chae-Soon Lee ◽  
...  

A scanning transmission X-ray microscope is operational at the 10A beamline at the Pohang Light Source. The 10A beamline provides soft X-rays in the photon energy range 100–2000 eV using an elliptically polarized undulator. The practically usable photon energy range of the scanning transmission X-ray microscopy (STXM) setup is from ∼150 to ∼1600 eV. With a zone plate of 25 nm outermost zone width, the diffraction-limited space resolution, ∼30 nm, is achieved in the photon energy range up to ∼850 eV. In transmission mode for thin samples, STXM provides the element, chemical state and magnetic moment specific distributions, based on absorption spectroscopy. A soft X-ray fluorescence measurement setup has been implemented in order to provide the elemental distribution of thicker samples as well as chemical state information with a space resolution of ∼50 nm. A ptychography setup has been implemented in order to improve the space resolution down to 10 nm. Hardware setups and application activities of the STXM are presented.


2016 ◽  
Vol 23 (2) ◽  
pp. 425-429 ◽  
Author(s):  
Philip Heimann ◽  
Michael MacDonald ◽  
Bob Nagler ◽  
Hae Ja Lee ◽  
Eric Galtier ◽  
...  

The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method.


2018 ◽  
Vol 25 (5) ◽  
pp. 1556-1564 ◽  
Author(s):  
Shusaku Hayama ◽  
Graham Duller ◽  
John P. Sutter ◽  
Monica Amboage ◽  
Roberto Boada ◽  
...  

A description of the technical and design details of a scanning four-bounce crystal monochromator that has recently been commissioned for the Versatile X-ray Absorption Spectroscopy (XAS) beamline at Diamond Light Source is presented. This device consists of two independent rotary axes of unique design which are synchronized using a multiple read-head encoder system. This monochromator is shown to be capable of maintaining the flux throughput of the Bragg axes without the need of any external feedback mechanism from 4 to 20 keV. The monochromator is currently equipped with cryogenically cooled crystals with the upstream axis consisting of two independent Si(111) crystals and a pair of channel-cut crystals in the downstream axis. The possibility of installing an additional Si(311) crystal-set to extend the energy range to 34 keV is incorporated into the preliminary design of the device. Experimental data are presented showing the exceptional mechanical stability and repeatability of the monochromator axes.


2021 ◽  
Vol 28 (2) ◽  
pp. 618-623
Author(s):  
Shotaro Tanaka ◽  
Shuto Suzuki ◽  
Tomohiro Mishima ◽  
Kazuhiro Kanda

Soft X-rays excite the inner shells of materials more efficiently than any other form of light. The investigation of synchrotron radiation (SR) processes using inner-shell excitation requires the beamline to supply a single-color and high-photon-flux light in the soft X-ray region. A new integrated computing multi-layered-mirror (MLM) monochromator was installed at beamline 07A (BL07A) of NewSUBARU, which has a 3 m undulator as a light source for irradiation experiments with high-photon-flux monochromatic light. The MLM monochromator has a high reflectivity index in the soft X-ray region; it eliminates unnecessary harmonic light from the undulator and lowers the temperature of the irradiated sample surfaces. The monochromator can be operated in a high vacuum, and three different mirror pairs are available for different experimental energy ranges; they can be exchanged without exposing the monochromator to the atmosphere. Measurements of the photon current of a photodiode on the sample stage indicated that the photon flux of the monochromatic beam was more than 1014 photons s−1 cm−2 in the energy range 80–400 eV and 1013 photons s−1 cm−2 in the energy range 400–800 eV. Thus, BL07A is capable of performing SR-stimulated process experiments.


2016 ◽  
Vol 23 (1) ◽  
pp. 206-213 ◽  
Author(s):  
Jean Rinkel ◽  
Debora Magalhães ◽  
Franz Wagner ◽  
Florian Meneau ◽  
Flavio Cesar Vicentin

Synchrotron-radiation-based X-ray imaging techniques using tender X-rays are facing a growing demand, in particular to probe theKabsorption edges of low-Zelements. Here, a mathematical model has been developed for estimating the detective quantum efficiency (DQE) at zero spatial frequency in the tender X-ray energy range for photon-counting detectors by taking into account the influence of electronic noise. The experiments were carried out with a Medipix3RX ASIC bump-bonded to a 300 µm silicon sensor at the Soft X-ray Spectroscopy beamline (D04A-SXS) of the Brazilian Synchrotron Light Laboratory (LNLS, Campinas, Brazil). The results show that Medipix3RX can be used to develop new imaging modalities in the tender X-ray range for energies down to 2 keV. The efficiency and optimal DQE depend on the energy and flux of the photons. The optimal DQE values were found in the 7.9–8.6 keV photon energy range. The DQE deterioration for higher energies due to the lower absorption efficiency of the sensor and for lower energies due to the electronic noise has been quantified. The DQE for 3 keV photons and 1 × 104 photons pixel−1s−1is similar to that obtained with 19 keV photons. Based on our model, the use of Medipix3RX could be extended down to 2 keV which is crucial for coming applications in imaging techniques at modern synchrotron sources.


IUCrJ ◽  
2017 ◽  
Vol 4 (2) ◽  
pp. 147-151 ◽  
Author(s):  
M. Yusuf ◽  
F. Zhang ◽  
B. Chen ◽  
A. Bhartiya ◽  
K. Cunnea ◽  
...  

Biological sample-preparation procedures have been developed for imaging human chromosomes under cryogenic conditions. A new experimental setup, developed for imaging frozen samples using beamline I13 at Diamond Light Source, is described. This manuscript describes the equipment and experimental procedures as well as the authors' first ptychographic reconstructions using X-rays.


2011 ◽  
Vol 1 (SRMS-7) ◽  
Author(s):  
U. H. Wagner ◽  
Z. D. Pešić ◽  
C. Rau

I13L is a 250 m long hard X-ray beamline (6–30 keV) currently under construction at the Diamond Light Source. The beamline comprises two independent experimental endstations: one for imaging in direct space using X-ray microscopy and one for imaging in reciprocal space using coherent diffraction-based imaging techniques. This paper will discuss the coherence branch, where well-defined coherence properties and preservation of the coherent flux are important. We will demonstrate the impact of optical components and stability onto the beamline performance, using phase-space-based ray-tracing techniques. The implications onto the beamline design will be demonstrated using our in-house build quadruple crystal monochromator as an example.


2017 ◽  
Vol 24 (4) ◽  
pp. 738-743 ◽  
Author(s):  
Tom Pardini ◽  
Andrew Aquila ◽  
Sébastien Boutet ◽  
Daniele Cocco ◽  
Stefan P. Hau-Riege

Numerical simulations of the current and future pulse intensity distributions at selected locations along the Far Experimental Hall, the hard X-ray section of the Linac Coherent Light Source (LCLS), are provided. Estimates are given for the pulse fluence, energy and size in and out of focus, taking into account effects due to the experimentally measured divergence of the X-ray beam, and measured figure errors of all X-ray optics in the beam path. Out-of-focus results are validated by comparison with experimental data. Previous work is expanded on, providing quantitatively correct predictions of the pulse intensity distribution. Numerical estimates in focus are particularly important given that the latter cannot be measured with direct imaging techniques due to detector damage. Finally, novel numerical estimates of improvements to the pulse intensity distribution expected as part of the on-going upgrade of the LCLS X-ray transport system are provided. We suggest how the new generation of X-ray optics to be installed would outperform the old one, satisfying the tight requirements imposed by X-ray free-electron laser facilities.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1735-C1735
Author(s):  
James Gorin ◽  
Shaunivan Labiuk ◽  
Julien Cotelesage ◽  
Kathryn Janzen ◽  
Michel Fodje ◽  
...  

The Canadian Macromolecular Crystallography Facility (CMCF) at the Canadian Light Source consists of two macromolecular crystallography beamlines for structure determination using x-ray diffraction. The equipment at the CMCF beamlines have undergone or will undergo changes and improvements to better meet the needs of the most challenging experiments users may present. Among these improvements are: 1) Automounter improvements; 2) Better goniometry on 08ID-1 with the addition of a Huber air-bearing goniometer; 3) Added beam size capabilities on 08ID-1 with the addition of a multiple beam defining aperture holder; 4) XAFS capability on 08B1-1; 5) Improved low energy S-SAD data collection with the addition of a Helium path; 6) Improvements to the data collection and data management software; 7) A vacuum path for scattering experiments with detector distances up to 1 m; 8) A comprehensive beamline upgrade project on the 08ID-1 beamline; and 9) Service crystallography services.


Sign in / Sign up

Export Citation Format

Share Document