Synthesis and absolute structure of (R)-2-(benzylselanyl)-1-phenylethanaminium hydrogen sulfate monohydrate: crystal structure and Hirshfeld surface analyses
A hydrogen sulfate salt, C15H18NSe+·HSO4 −·H2O or [BnSeCH2CH(Ph)NH3 +](HSO4 −), of a chiral selenated amine (R)-2-(benzylselanyl)-1-phenylethanamine (BnSeCH2CH(Ph)NH2) has been synthesized and characterized by elemental analysis,1H and 13C{1H} NMR, FT–IR analysis, and single-crystal X-ray diffraction studies. The title salt crystallizes in the monohydrate form in the non-centrosymmetric monoclinic P21 space group. The cation is somewhat W shaped with the dihedral angle between the two aromatic rings being 60.9 (4)°. The carbon atom attached to the amine nitrogen atom is chiral and in the R configuration, and, the –C—C– bond of the –CH2—CH– fragment has a staggered conformation. In the crystal structure, two HSO4 − anions and two water molecules form an R 4 4(12) tetrameric type of assembly comprised of alternating HSO4 − anions and water molecules via discrete D(2) O—H...O hydrogen bonds. This tetrameric assembly aggregates along the b-axis direction as an infinite one-dimensional tape. Adjacent tapes are interconnected via discrete D(2) N—H...O hydrogen bonds between the three amino hydrogen atoms of the cation sandwiched between the two tapes and the three HSO4 − anions of the nearest asymmetric units, resulting in a complex two-dimensional sheet along the ab plane. The pendant arrangement of the cations is stabilized by C—H...π interactions between adjacent cations running as chains down the [010] axis. Secondary Se...O [3.1474 (4) Å] interactions are also observed in the crystal structure. A Hirshfeld surface analysis, including d norm, shape-index and fingerprint plots of the cation, anion and solvent molecule, was carried out to confirm the presence of various interactions in the crystal structure.