A deterministic contractor selection decision support system for competitive bidding

2017 ◽  
Vol 24 (1) ◽  
pp. 61-77 ◽  
Author(s):  
Nabil Semaan ◽  
Michael Salem

Purpose The construction industry today is one of the biggest industries in the world. As projects continue to grow in complexity, project management continues to evolve. Contractor selection is a difficult task that owners and project managers face. Although previously researchers have worked on the subject of contractor selection, a comprehensive decision support system for contractor selection has not yet been developed. Recent reports of major delays and cost overruns in mega projects highlight the need for a model that is able to be flexible and comprehensive becomes evident. The paper aims to discuss these issues. Design/methodology/approach The research focuses on obtaining insights from field experts using both quantitative and qualitative methods. Then, a model was developed in the light of the data collected. Accordingly, the model was tested on a case study. Findings This paper presents a model for contractor selection that is wholesome in its take on the topic. The model incorporates both managerial and technical aspects of the problem. The model was tested on a case study and it was proven to be feasible in real world applications. The contractor selection decision support system serves the needs of both academics and industry managers, as an integral part of project management. Originality/value The model presented in this paper is innovative in its take on the problems. MCDA tools have been uniquely modified in this paper to cater to the needs of the selection problem while accounting for the criteria hierarchy that incorporates aspects that are instrumental for proper evaluation of a contractor’s likelihood of success.

Author(s):  
Kübra Tümay Ateş ◽  
Cenk Şahin ◽  
Yusuf Kuvvetli ◽  
Bülent A. Küren ◽  
Aykut Uysal

2017 ◽  
Vol 45 (7/8) ◽  
pp. 808-825 ◽  
Author(s):  
Alexander Hübner

Purpose Because increasing product variety in retail conflicts with limited shelf space, managing assortment and shelf quantities is a core decision in this sector. A retailer needs to define the assortment size and then assign shelf space to meet consumer demand. However, the current literature lacks not only information on the comprehensive structure of the decision problem, but also a decision support system that can be directly applied to practice in a straightforward manner. The paper aims to discuss these issues. Design/methodology/approach The findings were developed and evaluated by means of explorative interviews with grocery retail experts. An optimization model is proposed to solve the problem of assortment planning with limited shelf space for data sets of a size relevant in real retail practice. Findings The author identifies the underlying planning problems based on a qualitative survey of retailers and relates the problems to each other. This paper develops a pragmatic approach to the capacitated assortment problem with stochastic demand and substitution effects. The numerical examples reveal that substitution demand has a significant impact on total profit and solution structure. Practical implications The author shows that the model and solution approach are scalable to problem sizes relevant in practice. Furthermore, the planning architecture structures the related planning questions and forms a foundation for further research on decision support systems. Originality/value The planning framework structures the associated decision problems in assortment planning. An efficient solution approach for assortment planning is proposed.


2021 ◽  
Author(s):  
Chawis Boonmee ◽  
Nirand Pisutha-Arnond ◽  
Wichai Chattinnawat ◽  
Pooriwat Muangwong ◽  
Wannapha Nobnop ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongming Gao ◽  
Hongwei Liu ◽  
Haiying Ma ◽  
Cunjun Ye ◽  
Mingjun Zhan

PurposeA good decision support system for credit scoring enables telecom operators to measure the subscribers' creditworthiness in a fine-grained manner. This paper aims to propose a robust credit scoring system by leveraging latent information embedded in the telecom subscriber relation network based on multi-source data sources, including telecom inner data, online app usage, and offline consumption footprint.Design/methodology/approachRooting from network science, the relation network model and singular value decomposition are integrated to infer different subscriber subgroups. Employing the results of network inference, the paper proposed a network-aware credit scoring system to predict the continuous credit scores by implementing several state-of-art techniques, i.e. multivariate linear regression, random forest regression, support vector regression, multilayer perceptron, and a deep learning algorithm. The authors use a data set consisting of 926 users of a Chinese major telecom operator within one month of 2018 to verify the proposed approach.FindingsThe distribution of telecom subscriber relation network follows a power-law function instead of the Gaussian function previously thought. This network-aware inference divides the subscriber population into a connected subgroup and a discrete subgroup. Besides, the findings demonstrate that the network-aware decision support system achieves better and more accurate prediction performance. In particular, the results show that our approach considering stochastic equivalence reveals that the forecasting error of the connected-subgroup model is significantly reduced by 7.89–25.64% as compared to the benchmark. Deep learning performs the best which might indicate that a non-linear relationship exists between telecom subscribers' credit scores and their multi-channel behaviours.Originality/valueThis paper contributes to the existing literature on business intelligence analytics and continuous credit scoring by incorporating latent information of the relation network and external information from multi-source data (e.g. online app usage and offline consumption footprint). Also, the authors have proposed a power-law distribution-based network-aware decision support system to reinforce the prediction performance of individual telecom subscribers' credit scoring for the telecom marketing domain.


2017 ◽  
Vol 20 (1) ◽  
pp. 19-22
Author(s):  
Róbert Galamboš ◽  
Jana Galambošová ◽  
Vladimír Rataj ◽  
Miroslav Kavka

Abstract Presented paper deals with the topic of preventive maintenance. A decision support system was designed, incorporating historical as well as forecast information to calculate the time remaining to preventive maintenance. The designed system optimizes maintenance costs without any further investment and running costs. An algorithm of the designed system is introduced and a case study of its implementation is described in the paper.


Author(s):  
Martinus Giawa ◽  
Paska Marto Hasugian

Currently, many companies still use manual in doing any one of them is an office job CV. Independent cooperative. Based on the results of research on the CV. Koperasi Mandiri to determine the best customer still does not have a conventional and special methods and are less effective. Based on the results of this research make customer Election Decision Support System Best with ELECTRE method. Where the method ELECTRE perform testing based on criteria sort by value and ranking obtained using pairwise comparison of alternatives based on any appropriate criteria.


Sign in / Sign up

Export Citation Format

Share Document