New travelling wave solutions for coupled fractional variant Boussinesq equation and approximate long water wave equation

Author(s):  
Limei Yan

Purpose – The purpose of this paper is to apply the fractional sub-equation method to research on coupled fractional variant Boussinesq equation and fractional approximate long water wave equation. Design/methodology/approach – The algorithm is implemented with the aid of fractional Ricatti equation and the symbol computational system Mathematica. Findings – New travelling wave solutions, which include generalized hyperbolic function solutions, generalized trigonometric function solutions and rational solutions, for these two equations are obtained. Originality/value – The algorithm is demonstrated to be direct and precise, and can be used for many other nonlinear fractional partial differential equations. The fractional derivatives described in this paper are in the Jumarie's modified Riemann-Liouville sense.

2009 ◽  
Vol 64 (9-10) ◽  
pp. 540-552
Author(s):  
Mamdouh M. Hassan

With the aid of symbolic computation and the extended F-expansion method, we construct more general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave system. These solutions include single and combined Jacobi elliptic function solutions, rational solutions, hyperbolic function solutions, and trigonometric function solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Abdelfattah El Achab

Travelling wave solutions for the generalized Boussinesq wave equation are studied by using the Weierstrass elliptic function method. As a result, some previously known solutions are recovered, and at the same time some new ones are also given, as well as integrable ones.


Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut

In this paper, we apply the sine-Gordon expansion method which is one of the powerful methods to the generalized-Zakharov equation with complex structure. This algorithm yields new complex hyperbolic function solutions to the generalized-Zakharov equation with complex structure. Wolfram Mathematica 9 has been used throughout the paper for plotting two- and three-dimensional surface of travelling wave solutions obtained.


2003 ◽  
Vol 17 (1) ◽  
pp. 121-126 ◽  
Author(s):  
S.A. Elwakil ◽  
S.K. El-labany ◽  
M.A. Zahran ◽  
R. Sabry

2003 ◽  
Vol 58 (9-10) ◽  
pp. 511-519 ◽  
Author(s):  
Biao Li ◽  
Yong Chen

Based on the general projective Riccati equations method and symbolic computation, some new exact travelling wave solutions are obtained for a nonlinear reaction-diffusion equation, the highorder modified Boussinesq equation and the variant Boussinesq equation. The obtained solutions contain solitary waves, singular solitary waves, periodic and rational solutions. From our results, we can not only recover the known solitary wave solutions of these equations found by existing various tanh methods and other sophisticated methods, but also obtain some new and more general travelling wave solutions.


2016 ◽  
Vol 20 (3) ◽  
pp. 893-898 ◽  
Author(s):  
Yi Tian ◽  
Zai-Zai Yan

This paper considers a non-linear wave equation arising in fluid mechanics. The exact traveling wave solutions of this equation are given by using G'/G-expansion method. This process can be reduced to solve a system of determining equations, which is large and difficult. To reduce this process, we used Wu elimination method. Example shows that this method is effective.


Sign in / Sign up

Export Citation Format

Share Document