Non-TravellingWave Solutions of the (2+1)-Dimensional Dispersive Long Wave System

2009 ◽  
Vol 64 (9-10) ◽  
pp. 540-552
Author(s):  
Mamdouh M. Hassan

With the aid of symbolic computation and the extended F-expansion method, we construct more general types of exact non-travelling wave solutions of the (2+1)-dimensional dispersive long wave system. These solutions include single and combined Jacobi elliptic function solutions, rational solutions, hyperbolic function solutions, and trigonometric function solutions.

2011 ◽  
Vol 66 (1-2) ◽  
pp. 33-39 ◽  
Author(s):  
Sheng Zhang ◽  
Ying-Na Sun ◽  
Jin-Mei Ba ◽  
Ling Dong

A modified (Gʹ/G)-expansion method is proposed to construct exact solutions of nonlinear evolution equations. To illustrate the validity and advantages of the method, the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama (YTSF) equation is considered and more general travelling wave solutions are obtained. Some of the obtained solutions, namely hyperbolic function solutions, trigonometric function solutions, and rational solutions contain an explicit linear function of the variables in the considered equation. It is shown that the proposed method provides a more powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.


Author(s):  
Ozkan Guner

In this paper, solitary-wave ansatz and the (G?/G)-expansion methods have been used to obtain exact solutions of the fractional regularized long-wave (RLW) and coupled Nizhnik-Novikov-Veselov (NNV) equation. As a result, three types of exact analytical solutions such as rational function solutions, trigonometric function solutions, hyperbolic function solutions are formally derived these equations. Proposed methods are more powerful and can be applied to other fractional differential equations arising in mathematical physics.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Adem Kılıcman ◽  
Reza Abazari

We establish exact solutions for the Schrödinger-Boussinesq Systemiut+uxx−auv=0,vtt−vxx+vxxxx−b(|u|2)xx=0, whereaandbare real constants. The (G′/G)-expansion method is used to construct exact periodic and soliton solutions of this equation. Our work is motivated by the fact that the (G′/G)-expansion method provides not only more general forms of solutions but also periodic and solitary waves. As a result, hyperbolic function solutions and trigonometric function solutions with parameters are obtained. These solutions may be important and of significance for the explanation of some practical physical problems.


2015 ◽  
Vol 2 ◽  
pp. 1-16 ◽  
Author(s):  
Muhammad Shakeel ◽  
Syed Tauseef Mohyud-Din

In this work, we use the fractional complex transformation which converts nonlinear fractional partial differential equation to nonlinear ordinary differential equation. A fractional novel (G`/G) - expansion method is used to look for exact solutions of nonlinear evolution equation with the aid of symbolic computation. To check the validity of the method we choose the space-time fractional symmetric regularized long wave (SRLW) equation and as a result, many exact analytical solutions are obtained including hyperbolic function solutions, trigonometric function solutions, and rational solutions. The performance of the method is reliable, useful and gives more new general exactsolutions than the existing methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut

In this paper, we apply the sine-Gordon expansion method which is one of the powerful methods to the generalized-Zakharov equation with complex structure. This algorithm yields new complex hyperbolic function solutions to the generalized-Zakharov equation with complex structure. Wolfram Mathematica 9 has been used throughout the paper for plotting two- and three-dimensional surface of travelling wave solutions obtained.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 871-880
Author(s):  
Bo Tang ◽  
Jiajia Tao ◽  
Shijun Chen ◽  
Junfeng Qu ◽  
Qian Wang ◽  
...  

Abstract In the present study, we deal with the space–time fractional KdV–MKdV equation and the space–time fractional Konopelchenko–Dubrovsky equation in the sense of the conformable fractional derivative. By means of the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method, many exact solutions are obtained, which include hyperbolic function solutions, trigonometric function solutions and rational solutions. The results show that the extend \left(\tfrac{G^{\prime} }{G}\right) -expansion method is an efficient technique for solving nonlinear fractional partial equations. We also provide some graphical representations to demonstrate the physical features of the obtained solutions.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Muhammad Shakeel ◽  
Qazi Mahmood Ul-Hassan ◽  
Jamshad Ahmad ◽  
Tauseef Naqvi

The fractional derivatives are used in the sense modified Riemann-Liouville to obtain exact solutions for BBM-Burger equation of fractional order. This equation can be converted into an ordinary differential equation by using a persistent fractional complex transform and, as a result, hyperbolic function solutions, trigonometric function solutions, and rational solutions are attained. The performance of the method is reliable, useful, and gives newer general exact solutions with more free parameters than the existing methods. Numerical results coupled with the graphical representation completely reveal the trustworthiness of the method.


2019 ◽  
Vol 23 (4) ◽  
pp. 2403-2411 ◽  
Author(s):  
Bo Xu ◽  
Sheng Zhang

In this paper, the (4+1)-dimensional Fokas equation is solved by the generalized F-expansion method, and new exact solutions with arbitrary functions are obtained. The obtained solutions include Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the generalized F-expansion method can be used for constructing exact solutions with arbitrary functions of some other high dimensional partial differential equations in fluids.


Author(s):  
Limei Yan

Purpose – The purpose of this paper is to apply the fractional sub-equation method to research on coupled fractional variant Boussinesq equation and fractional approximate long water wave equation. Design/methodology/approach – The algorithm is implemented with the aid of fractional Ricatti equation and the symbol computational system Mathematica. Findings – New travelling wave solutions, which include generalized hyperbolic function solutions, generalized trigonometric function solutions and rational solutions, for these two equations are obtained. Originality/value – The algorithm is demonstrated to be direct and precise, and can be used for many other nonlinear fractional partial differential equations. The fractional derivatives described in this paper are in the Jumarie's modified Riemann-Liouville sense.


Sign in / Sign up

Export Citation Format

Share Document