Lie group analysis of chemical reaction effects on MHD free convection dissipative fluid flow past an inclined porous surface

2015 ◽  
Vol 25 (7) ◽  
pp. 1557-1573 ◽  
Author(s):  
G. Venkata Ramana Reddy ◽  
Ali J Chamkha

Purpose – The purpose of this paper is to study chemical reaction and heat and mass transfer effects on steady free convection flow in an inclined porous plate in the presence of MHD and viscous dissipation through the application of scaling group of transformation and numerical method. Design/methodology/approach – The fourth-order Runge-Kutta along with the shooting method is employed in the numerical solution of the governing equations. Findings – The magnetic field parameter, the permeability of porous medium and the viscous dissipation are demonstrated to exert a more significant effect on the flow field and, thus, on the heat transfer from the plate to the fluid. Originality/value – The problem is relatively original.

2019 ◽  
Vol 24 (2) ◽  
pp. 343-358 ◽  
Author(s):  
B. Prabhakar Reddy

Abstract The numerical investigation of the effects of radiation and chemical reaction on an unsteady MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical porous plate taking into account the viscous dissipation effect has been carried out. The fluid is considered a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing equations for this investigation are solved numerically by applying the Ritz finite element method. Numerical results for the velocity profiles, temperature profiles and concentration profiles as well as the skin-friction are presented through graphs and tables for different values of the physical parameters involved. Results obtained show a decrease in the temperature and velocity in the boundary layer as the radiation parameter increased. The velocity increases with an increase in the thermal and mass Grashof numbers and decreases with an increase in the magnetic parameter. Further, the concentration and velocity decreases with increasing the Schmidt number and chemical reaction parameter. These findings are in very good agreement with the studies reported earlier.


2011 ◽  
Vol 17 (3) ◽  
pp. 249-257 ◽  
Author(s):  
Rao Anand ◽  
S. Shivaiah

This paper focuses on the effects of chemical reaction on an unsteady magneto hydrodynamic free convection fluid flow past an infinite vertical porous plate with constant suction has been analyzed. The dimensionless governing equations are solved numerically by a finite element method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-friction coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2014 ◽  
Vol 19 (2) ◽  
pp. 303-320 ◽  
Author(s):  
B. Prabhakar Reddy

Abstract The thermal diffusion and viscous dissipation effects on an unsteady MHD free convection heat and mass transfer flow of an incompressible, electrically conducting, fluid past an infinite vertical porous plate embedded in a porous medium of time dependent permeability under oscillatory suction velocity in the presence of a heat absorbing sink have been studied. It is considered that the influence of a uniform magnetic field acts normal to the flow and the permeability of the porous medium fluctuates with time. The dimensionless governing equations for this investigation have been solved numerically by using the efficient Galerkin finite element method. The numerical results obtained have been presented through graphs and tables for the thermal Grashof number (Gr > 0) corresponding to the cooling of the porous plate and (Gr < 0) corresponding to heating of the porous plate to observe the effects of various material parameters encountered in the problem under investigation. Numerical data for skin-friction, Nusselt and Sherwood numbers are tabulated and then discussed.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 410 ◽  
Author(s):  
K. V. B. Raja kumar ◽  
K. S. Balamurugan ◽  
Ch. V. Ramana Murthy ◽  
N. Ranganath

In this paper the viscous dissipation and Dufour effects on Unsteady MHD free convective flow through a semi-infinite Oscillatory porous inclined plate of time dependent permeability with Chemical reaction and Hall and Ion-Slip Current in a Rotating System was investigated. The dimensionless governing equations for this investigation are solved analytically by using multiple regular perturbation law. The effects of different parameters on velocity, temperature and concentration fields are shown graphically.  


2021 ◽  
Vol 12 (5) ◽  
pp. 6280-6296

This work studies the steady two-dimensional MHD free convection flow past an inclined porous plate embedded in the porous medium in the presence of heat source, iSoret effect, and chemical reaction. The non-dimensional governing equations are solved by the perturbation technique. The Rosseland approximation is utilized to describe the radiative heat flux in the energy equation. The effect of magnetic parameter, heat source parameter, radiation parameter, Grashofi number, modified Grashofi number, Schmidt number, Prandtl number, porosity parameter, Soreti number, and chemical reaction on velocity, temperature, concentration profiles, skin friction, Nusselt number, and Sherwood number are mainly focussed in discussion with the help of graphs. It is seen that velocity, concentration, and skin friction fall with the increasing value of chemical reaction. Further, temperature, Nusselt number, and Sherwood number increase with the increasing value of chemical reaction.


2007 ◽  
Vol 34 (2) ◽  
pp. 135-160 ◽  
Author(s):  
Ramachandra Prasad ◽  
Bhaskar Reddy

An unsteady, two-dimensional, hydromagnetic, laminar free convective boundary-layer flow of an incompressible, Newtonian, electrically-conducting and radiating fluid past an infinite heated vertical porous plate with heat and mass transfer is analyzed, by taking into account the effect of viscous dissipation. The dimensionless governing equations for this investigation are solved analytically using two-term harmonic and non-harmonic functions. Numerical evaluation of the analytical results is performed and graphical results for velocity, temperature and concentration profiles within the boundary layer and tabulated results for the skin-friction coefficient, Nusselt number and Sherwood number are presented and discussed. It is observed that, when the radiation parameter increases, the velocity and temperature decrease in the boundary layer, whereas when thermal and solutal Grashof increases the velocity increases.


Sign in / Sign up

Export Citation Format

Share Document