Forecasting daily attraction demand using big data from search engines and social media

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fengjun Tian ◽  
Yang Yang ◽  
Zhenxing Mao ◽  
Wenyue Tang

Purpose This paper aims to compare the forecasting performance of different models with and without big data predictors from search engines and social media. Design/methodology/approach Using daily tourist arrival data to Mount Longhu, China in 2018 and 2019, the authors estimated ARMA, ARMAX, Markov-switching auto-regression (MSAR), lasso model, elastic net model and post-lasso and post-elastic net models to conduct one- to seven-days-ahead forecasting. Search engine data and social media data from WeChat, Douyin and Weibo were incorporated to improve forecasting accuracy. Findings Results show that search engine data can substantially reduce forecasting error, whereas social media data has very limited value. Compared to the ARMAX/MSAR model without big data predictors, the corresponding post-lasso model reduced forecasting error by 39.29% based on mean square percentage error, 33.95% based on root mean square percentage error, 46.96% based on root mean squared error and 45.67% based on mean absolute scaled error. Practical implications Results highlight the importance of incorporating big data predictors into daily demand forecasting for tourism attractions. Originality/value This study represents a pioneering attempt to apply the regularized regression (e.g. lasso model and elastic net) in tourism forecasting and to explore various daily big data indicators across platforms as predictors.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sajjad Shokouhyar ◽  
Amirhossein Dehkhodaei ◽  
Bahar Amiri

Purpose Recently, reverse logistics (RL) has become more prominent due to growing environmental concerns, social responsibility, competitive advantage and high efficiency by customers because of the expansion of product selection and shorter product life cycle. However, effective implementation of RL results in some direct advantages, the most important of which is winning customer satisfaction that is vital to a firm’s success. Therefore, paying attention to customer feedback in supply chain and logistics processes has recently increased so that manufacturers have decided to transform their RL into customer-centric RL. Hence, this paper aims to identify the features of a mobile phone which affect consumer purchasing behaviour and to analyse the interrelationship among them to develop a framework for customer-centric RL. These features are studied based on website analysis of several mobile phone manufacturers. The special focus of this paper is on social media data (Twitter) in an attempt to help the decision-making process in RL through a big data analysis approach. Design/methodology/approach A portfolio of mobile phone features that affect consumer’s mobile phone purchasing decisions has been taken from website analysis by several mobile phone manufacturers to achieve this objective. Then, interrelationships between the identified features have been established by using big data supplemented with interpretive structural modelling (ISM). Apart from that, cross-impact matrix multiplication, applied to classification analysis, was carried out to graphically represent these features based on their driving power and dependence. Findings During the study, it has been observed from the ISM that the chip (F5) is the most significant feature that affects customer’s buying behaviour; therefore, mobile phone manufacturers realize that this is to be addressed first. Originality/value The focus of this paper is on social media data (Twitter) so that experts can understand the interaction between mobile phone features that affect consumer’s decisions on mobile phone purchasing by using the results.


2017 ◽  
Vol 21 (2) ◽  
pp. 275-294 ◽  
Author(s):  
Wu He ◽  
Feng-Kwei Wang ◽  
Vasudeva Akula

Purpose This paper aims to propose a knowledge management (KM) framework for leveraging big social media data to help interested organizations integrate Big Data technology, social media and KM systems to store, share and leverage their social media data. Specifically, this research focuses on extracting valuable knowledge on social media by contextually comparing social media knowledge among competitors. Design/methodology/approach A case study was conducted to analyze nearly one million Twitter messages associated with five large companies in the retail industry (Costco, Walmart, Kmart, Kohl’s and The Home Depot) to extract and generate new knowledge and to derive business decisions from big social media data. Findings This case study confirms that this proposed framework is sensible and useful in terms of integrating Big Data technology, social media and KM in a cohesive way to design a KM system and its process. Extracted knowledge is presented visually in a variety of ways to discover business intelligence. Originality/value Practical guidance for integrating Big Data, social media and KM is scarce. This proposed framework is a pioneering effort in using Big Data technologies to extract valuable knowledge on social media and discover business intelligence by contextually comparing social media knowledge among competitors.


2017 ◽  
Vol 45 (3) ◽  
pp. 110-120 ◽  
Author(s):  
Lauren S. Elkin ◽  
Kamil Topal ◽  
Gurkan Bebek

Purpose Predicting future outbreaks and understanding how they are spreading from location to location can improve patient care provided. Recently, mining social media big data provided the ability to track patterns and trends across the world. This study aims to analyze social media micro-blogs and geographical locations to understand how disease outbreaks spread over geographies and to enhance forecasting of future disease outbreaks. Design/methodology/approach In this paper, the authors use Twitter data as the social media data source, influenza-like illnesses (ILI) as disease epidemic and states in the USA as geographical locations. They present a novel network-based model to make predictions about the spread of diseases a week in advance utilizing social media big data. Findings The authors showed that flu-related tweets align well with ILI data from the Centers for Disease Control and Prevention (CDC) (p < 0.049). The authors compared this model to earlier approaches that utilized airline traffic, and showed that ILI activity estimates of their model were more accurate. They also found that their disease diffusion model yielded accurate predictions for upcoming ILI activity (p < 0.04), and they predicted the diffusion of flu across states based on geographical surroundings at 76 per cent accuracy. The equations and procedures can be translated to apply to any social media data, other contagious diseases and geographies to mine large data sets. Originality/value First, while extensive work has been presented utilizing time-series analysis on single geographies, or post-analysis of highly contagious diseases, no previous work has provided a generalized solution to identify how contagious diseases diffuse across geographies, such as states in the USA. Secondly, due to nature of the social media data, various statistical models have been extensively used to address these problems.


Author(s):  
Philip Habel ◽  
Yannis Theocharis

In the last decade, big data, and social media in particular, have seen increased popularity among citizens, organizations, politicians, and other elites—which in turn has created new and promising avenues for scholars studying long-standing questions of communication flows and influence. Studies of social media play a prominent role in our evolving understanding of the supply and demand sides of the political process, including the novel strategies adopted by elites to persuade and mobilize publics, as well as the ways in which citizens react, interact with elites and others, and utilize platforms to persuade audiences. While recognizing some challenges, this chapter speaks to the myriad of opportunities that social media data afford for evaluating questions of mobilization and persuasion, ultimately bringing us closer to a more complete understanding Lasswell’s (1948) famous maxim: “who, says what, in which channel, to whom, [and] with what effect.”


2018 ◽  
Vol 03 (03) ◽  
pp. 1850003 ◽  
Author(s):  
Jared Oliverio

Big Data is a very popular term today. Everywhere you turn companies and organizations are talking about their Big Data solutions and Analytic applications. The source of the data used in these applications varies. However, one type of data is of great interest to most organizations, Social Media Data. Social Media applications are used by a large percentage of the world’s population. The ability to instantly connect and reach other people and companies over distributed distances is an important part of today’s society. Social Media applications allow users to share comments, opinions, ideas, and media with friends, family, businesses, and organizations. The data contained in these comments, ideas, and media are valuable to many types of organizations. Through Data Mining and Analysis, it is possible to predict specific behavior in users of the applications. Currently, several technologies aid in collecting, analyzing, and displaying this data. These technologies allow users to apply this data to solve different problems, in different organizations, including the finance, medicine, environmental, education, and advertising industries. This paper aims to highlight the current technologies used in Data Mining and Analyzing Social Media data, the industries using this data, as well as the future of this field.


2018 ◽  
Vol 5 (2) ◽  
pp. 205395171880773 ◽  
Author(s):  
Cheryl Cooky ◽  
Jasmine R Linabary ◽  
Danielle J Corple

Social media offers an attractive site for Big Data research. Access to big social media data, however, is controlled by companies that privilege corporate, governmental, and private research firms. Additionally, Institutional Review Boards’ regulative practices and slow adaptation to emerging ethical dilemmas in online contexts creates challenges for Big Data researchers. We examine these challenges in the context of a feminist qualitative Big Data analysis of the hashtag event #WhyIStayed. We argue power, context, and subjugated knowledges must each be central considerations in conducting Big Data social media research. In doing so, this paper offers a feminist practice of holistic reflexivity in order to help social media researchers navigate and negotiate this terrain.


2016 ◽  
Author(s):  
Jonathan Mellon

This chapter discusses the use of large quantities of incidentallycollected data (ICD) to make inferences about politics. This type of datais sometimes referred to as “big data” but I avoid this term because of itsconflicting definitions (Monroe, 2012; Ward & Barker, 2013). ICD is datathat was created or collected primarily for a purpose other than analysis.Within this broad definition, this chapter focuses particularly on datagenerated through user interactions with websites. While ICD has beenaround for at least half a century, the Internet greatly expanded theavailability and reduced the cost of ICD. Examples of ICD include data onInternet searches, social media data, and user data from civic platforms.This chapter briefly explains some sources and uses of ICD and thendiscusses some of the potential issues of analysis and interpretation thatarise when using ICD, including the different approaches to inference thatresearchers can use.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael S. Lin ◽  
Yun Liang ◽  
Joanne X. Xue ◽  
Bing Pan ◽  
Ashley Schroeder

Purpose Recent tourism research has adopted social media analytics (SMA) to examine tourism destination image (TDI) and gain timely insights for marketing purposes. Comparing the methodologies of SMA and intercept surveys would provide a more in-depth understanding of both methodologies and a more holistic understanding of TDI than each method on their own. This study aims to investigate the unique merits and biases of SMA and a traditional visitor intercept survey. Design/methodology/approach This study collected and compared data for the same tourism destination from two sources: responses from a visitor intercept survey (n = 1,336) and Flickr social media photos and metadata (n = 11,775). Content analysis, machine learning and text analysis techniques were used to analyze and compare the destination image represented from both methods. Findings The results indicated that the survey data and social media data shared major similarities in the identified key image phrases. Social media data revealed more diverse and more specific aspects of the destination, whereas survey data provided more insights in specific local landmarks. Survey data also included additional subjective judgment and attachment towards the destination. Together, the data suggested that social media data should serve as an additional and complementary source of information to traditional survey data. Originality/value This study fills a research gap by comparing two methodologies in obtaining TDI: SMA and a traditional visitor intercept survey. Furthermore, within SMA, photo and metadata are compared to offer additional awareness of social media data’s underlying complexity. The results showed the limitations of text-based image questions in surveys. The findings provide meaningful insights for tourism marketers by having a more holistic understanding of TDI through multiple data sources.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yi Chen ◽  
Chuanfu Chen ◽  
Si Li

PurposeThe purpose of this study was to investigate the participants' attitudes toward the ethical issues caused by collecting social media data (SMD) for research, as well as the effects of familiarity, trust and altruism on the participants' attitudes toward the ethics of SMD research. It is hoped that through this study, scholars will be reminded to respect participants and engage in ethical reflection when using SMD in research.Design/methodology/approachThis study adopted social media users as its research subjects and used Sina Microblog, the world's largest Chinese social media platform, as the example. Based on the 320 valid responses collected from a survey, structural equation modeling was employed to examine the research model.FindingsThe results indicated that altruism, familiarity and trust have significant influences on participants' attitudes toward the ethics of SMD research, and familiarity also influences attitudes through the mediating role of trust and altruism.Originality/valueThis study explored the mechanism underlying the relationship between the determining factors and participants' attitudes toward the ethics of SMD research, and the results demonstrated that the informed consent mechanism is an effective way to communicate with participants and that the guiding responsibility of the platform should be improved to standardize SMD research.


Sign in / Sign up

Export Citation Format

Share Document