Minimizing path loss and improving security in wireless body area networks

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinesh Kumar Anguraj ◽  
Abul Bashar ◽  
R. Nidhya ◽  
P.K. Shimna ◽  
Renjith V. Ravi

PurposeThe purpose of this paper is energy consumption and security. To extend the sensor’s life span, saving the energy in a sensor is important. In this paper, biosensors are implanted or suited on the human body, and then, transposition has been applied for biosensors for reducing the sensor distance from the sink node. After transposition path loss has been calculated, security is maintained and also compared the results with the existing strategies.Design/methodology/approachNowadays, one of the most emergent technologies is wireless body area network (WBAN), which represents to improve the quality of life and also allow for monitoring the remote patient and other health-care applications. Traffic routing plays a main role together with the relay nodes, which is used to collect the biosensor’s information and send it towards the sink.FindingsTo calculate the distance and observe the position, Euclidean distance technique is used. Path loss is the main parameter, which is needed to reduce for making better data transmission and to make the network stability. Routing protocols can be designed, with the help of proposed values of sensors locations in the human body, which gives good stability of network and lifetime. It helps to achieve as the less deplete energy.Originality/valueThis scheme is compared with the two existing schemes and shows the result in terms of parameter path loss. Moreover, this paper evaluated a new method for improving the security in WBAN. The main goal of this research is to find the optimal sensor location on the body and select the biosensor positions where they can get less energy while transmitting the data to the sink node, increasing the life span in biosensors, decreasing memory space, giving security, controlling the packet complexity and buffer overflow and also fixing the damages in the existing system.

Wireless Body Area Network (WBAN) is a collection of miniaturized sensing nodes and coordinator nodes. These sensing nodes are placed in, on and around the body for uninterrupted monitoring of physiological data for medical applications. The main application carrier of WBAN is the human body and due to human body movement and physiological changes, the WBAN traffic fluctuates greatly. This network traffic fluctuation requires good network adaptability. In addition to traffic fluctuations, energy consumption is another key problem with WBANs as sensing nodes are very small in size. This paper design a reliable protocol by extending the MAC protocol for reducing energy consumption, PAP algorithm to decide data transmission rate and JOAR algorithm to select the optimize path for the data transmission. The performance of the algorithm outperforms other state of art algorithms to shows its significance.


Author(s):  
Achmad Mauludiyanto ◽  
Gamantyo Hendrantoro ◽  
Muhammad Fachry Nova

The Wireless Body Area Network (WBAN) refers to a communication network between sensors placed on the inside, on the surface, or around the body wirelessly. WBAN system cannot be separated from body tissues. Body tissues also have electrical properties depending on frequency. Therefore, body tissue can affect the phenomena occurring in radio wave propagation in the WBAN channel. One of the phenomena is attenuation. This study investigates the impacts of body tissue on the WBAN channel and the effects of frequency on the attenuation of body tissue in the WBAN channel. The measurement of magnitude response was carried out with the human body as the measurement object by utilizing the S21 parameter measurement with a vector network analyzer. In NLOS conditions, a human body was located between two coplanar Vivaldi antenna. Measurements were conducted on the head, chest, and abdomen. The frequency used was in the range of 2 GHz to 6 GHz. The body tissue attenuation was obtained by finding the difference between the magnitude measurement response on the LOS and NLOS conditions. The attenuation data were analyzed using statistical and numerical analysis to determine the effect of frequency on the attenuation of the human body tissues. Based on the analysis results, it was identified that the frequency affected the human body tissue attenuation. The enhancement attenuation of the human body tissues occurred when the frequency was higher. Moreover, there was a significant difference in the body tissue attenuation in different parts of the body.Keywords: attenuation, body tissues, s-parameters, wireless body area network.


2020 ◽  
Author(s):  
Mayukh Nath ◽  
Alfred Krister Ulvog ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractWith the advent of wearable technologies, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated nodes of HBC have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through an application point of view, without developing a fundamental working principle for the same. In this paper, for the first time, a ground up analysis has been performed to study the possible effects and contributions of the human body channel in M-HBC over a broad frequency range (1kHz to 10 GHz), by detailed electromagnetic simulations and supporting experiments. The results show that while M-HBC can be successfully operated as a body area network, the human body itself plays a minimal or negligible role in it’s functionality. For frequencies less than ∼30 Hz, in the domain of operation of Magneto-quasistatic (MQS) HBC, the human body is transparent to the quasistatic magnetic field. Conversely for higher frequencies, the conductive nature of human tissues end up attenuating Magnetic HBC fields due to Eddy currents induced in body tissues, eliminating the possibility of the body to support efficient waveguide modes. With this better understanding at hand, different modes of operations of MQS HBC have been outlined for both high impedance capacitive and 50Ω termination cases, and their performances have been compared with EQS HBC for similar sized devices, over varying distance between TX and RX. The resulting report presents the first fundamental understanding towards M-HBC operation and its contrast with EQS HBC, aiding HBC device designers to make educated design decisions, depending on mode of applications.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Ogheneochuko Ubrurhe ◽  
Nigel Houlden ◽  
Peter S. Excell

The increasing use of wireless communication and the continuous miniaturisation of electronics devices have brought about the concept of Wireless Body Area Network (WBANs). In these types of networks, the sensor node operates in close proximity to the body and also the wireless nature of the system presents various novel, real-time and new methods to improve health care delivery. The sensor is capable of measuring any parameter which it has been designed to read, for example the heartrate and the body temperature. This paper presents a review of the concept of WBANs with a focus on the mechanism of data communication over the wireless medium. Further, it examines ways to power such devices, in particular focusing on minimisation of energy requirements, thereby reducing maintenance demands and contributing to making the environment ‘greener’.


2017 ◽  
Vol 23 (10) ◽  
pp. 4459-4473 ◽  
Author(s):  
Ke Lin ◽  
Bo Wang ◽  
Xing Zhang ◽  
Xinan Wang ◽  
Tingbin Ouyang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Kyeol Kwon ◽  
Jaegeun Ha ◽  
Soonyong Lee ◽  
Jaehoon Choi

A dual-band on-body antenna for a wireless body area network repeater system is proposed. The designed dual-band antenna has the maximum radiation directed toward the inside of the human body in the medical implantable communication service (MICS) band in order to collect vital information from the human body and directed toward the outside in the industrial, scientific, and medical (ISM) band to transmit that information to a monitoring system. In addition, the return loss property of the antenna is insensitive to human body effects by utilizing the epsilon negative zeroth-order resonance property.


2020 ◽  
Author(s):  
Arunashish Datta ◽  
Mayukh Nath ◽  
David Yang ◽  
Shreyas Sen

AbstractHuman Body Communication (HBC) has come up as a promising alternative to traditional radio frequency (RF) Wireless Body Area Network (WBAN) technologies. This is essentially due to HBC providing a broadband communication channel with enhanced signal security in the physical layer due to lower radiation from the human body as compared to its RF counterparts. An in-depth understanding of the mechanism for the channel loss variability and associated biophysical model needs to be developed before EQS-HBC can be used more frequently in WBAN consumer and medical applications. Biophysical models characterizing the human body as a communication channel didn’t exist in literature for a long time. Recent developments have shown models that capture the channel response for fixed transmitter and receiver positions on the human body. These biophysical models do not capture the variability in the HBC channel for varying positions of the devices with respect to the human body. In this study, we provide a detailed analysis of the change in path loss in a capacitive-HBC channel in the electroquasistatic (EQS) domain. Causes of channel loss variability namely: inter-device coupling and effects of fringe fields due to body’s shadowing effects are investigated. FEM based simulation results are used to analyze the channel response of human body for different positions and sizes of the device which are further verified using measurement results to validate the developed biophysical model. Using the bio-physical model, we develop a closed form equation for the path loss in a capacitive HBC channel which is then analyzed as a function of the geometric properties of the device and the position with respect to the human body which will help pave the path towards future EQS-HBC WBAN design.


Sign in / Sign up

Export Citation Format

Share Document