Microstructural, surface and fatigue analysis of stress peened leaf springs

2015 ◽  
Vol 6 (5) ◽  
pp. 589-604 ◽  
Author(s):  
Georgios Savaidis ◽  
Stylianos Karditsas ◽  
Alexander Savaidis ◽  
Roselita Fragoudakis

Purpose – The purpose of this paper is to investigate the fatigue and failure of commercial vehicle serial stress-peened leaf springs, emphasizing the technological impact of the material, the thermal treatment and the stress-peening process on the microstructure, the mechanical properties and the fatigue life. Theoretical fatigue analysis determines the influence of each individual technological parameter. Design engineers can assess the effectiveness of each manufacturing process step qualitatively and quantitatively, and derive conclusions regarding its improvement in terms of mechanical properties and fatigue life. Design/methodology/approach – Two different batches of 51CrV4 were examined to account for potential batch influences. Both specimen batches were subjected to the same heat treatment and stress-peening process. Investigations of their microstructure, hardness and residual stress state on the surface’ areas show the effect of the manufacturing process on the mechanical properties. Wöhler curves have been experimentally determined for the design of high-performance leaf springs. Theoretical fatigue analyses reveal the influence of every above mentioned technological factor on the fatigue life of the specimens. Therewith, the effectiveness and potential for further improvement of the manufacturing process steps are assessed. Findings – Microstructural analysis and hardness measurements quantify the decarburization and the degradation of the specimens’ surface properties. The stress-peening process causes significant compressive residual stresses which improve the fatigue life. On the other hand, it also leads to pronounced surface roughness, which reduces the fatigue life. The theoretical fatigue life analysis assesses the mutual effect of these two parameters. Both parameters cancel each other out in regards to the final effect on fatigue life. The sensitivity of the material and the potential for further improvement of both heat treatment and stress peening is appointed. Research limitations/implications – All quantitative values given here are strictly valid for the present leaf spring batches and should not be widely applied. The results of the present study indicate the sensitivity of high-strength spring steel used here to the various technological factors resulting from the heat treatment and the stress-peening process. In addition, it can be concluded that further research is necessary to improve the two processes (heat treatment process and the stress peening) under serial production conditions. Practical implications – The microstructure investigations in conjunction with the hardness measurements reveal the significant decrease of the mechanical properties of the highly stressed (failure-critical) tensile surface. Therewith, the potential for improvement of the heat treatment process, e.g. in more neutral and controlled atmosphere, can be derived. In addition, significant potential for improvement of the serially applied stress-peening process is revealed. Originality/value – The paper shows a systematic procedure to assess every individual manufacturing factor affecting the microstructure, the surface properties and finally, the fatigue life of leaf springs. An essential result is the quantification of the surface decarburization and its influence on the mechanical properties. The methodology proposed and applied within the theoretical fatigue life analysis to quantify the effect of technological factors on the fatigue life of leaf springs can be extended to any engineering component made of high-strength steel.

2019 ◽  
Vol 10 (5) ◽  
pp. 602-611
Author(s):  
Airee Afiq Abd Rahim ◽  
Shahrum Abdullah ◽  
Salvinder Singh Karam Singh ◽  
Mohd. Zaki Nuawi

Purpose The purpose of this paper is to focus on the reliability assessment on the basis of automobile suspension fatigue life using wavelet decomposition method. Design/methodology/approach The discrete wavelet transform (DWT) of automobile coil spring signal is implemented as a response to different road surfaces. A reliability analysis is applied to determine the potential of the wavelet implementation in fatigue life analysis. The signals used in this study are highway and rural road. Findings On the basis of the implementation of wavelet decomposition method, low-level decomposition replicates the original signals in comparison with high-level decomposition. The fatigue life of low-level decomposition lies in the 2:1 and 1:2 correlation graph. The percentage difference for mean cycle to failure presents low values for low-level decomposition, with 44.31 per cent for highway and 44.20 per cent for rural road. The percentage of difference for high-level decomposition is high. Originality/value The determination of fatigue life analysis by using the DWT method is suitable for low-level decomposition. High-level decomposition is considered noise that cannot be eliminated and does not contribute to the failure of the structure.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yong-Hua Li ◽  
Chi Zhang ◽  
Hao Yin ◽  
Yang Cao ◽  
Xiaoning Bai

PurposeThis paper proposes an improved fatigue life analysis method for optimal design of electric multiple units (EMU) gear, which aims at defects of traditional Miner fatigue cumulative damage theory.Design/methodology/approachA fatigue life analysis method by modifying S–N curve and considering material difference is presented, which improves the fatigue life of EMU gear based on shape modification optimization. A corrected method for stress amplitude, average stress and S–N curve is proposed, which considers low stress cycle, material difference and other factors. The fatigue life prediction of EMU gear is carried out by corrected S–N curve and transient dynamic analysis. Moreover, the gear modification technology combined with intelligent optimization method is adopted to investigate the approach of fatigue life analysis and improvement.FindingsThe results show that it is more corresponded to engineering practice by using the improved fatigue life analysis method than the traditional method. The function of stress and modification amount established by response surface method meets the requirement of precision. The fatigue life of EMU gear based on the intelligent algorithm for seeking the optimal modification amount is significantly improved compared with that before the modification.Originality/valueThe traditional fatigue life analysis method does not consider the influence of working condition and material. The life prediction results by using the method proposed in this paper are more accurate and ensure the safety of the people in the EMU. At the same time, the combination of intelligent algorithm and gear modification can improve the fatigue life of gear on the basis of accurate prediction, which is of great significance to the portability of EMU maintenance.


2011 ◽  
Vol 383-390 ◽  
pp. 5894-5898 ◽  
Author(s):  
Su Hong Liu ◽  
Fang Li

The stabilizer anti-roll bar can prevent the vehicle from rollover, so it is important to get the mechanical properties of it. To achieve it, the finite element technology is chosen and the parametric model was built in the first place. The von Mises stress distribution, reliability and the sensitivity were obtained after being analyzed respectively. Based on these, the fatigue life was estimated finally. The fatigue analysis results were contrasted with the life requirements of stabilizer bar’s endurance test.


1983 ◽  
Vol 22 ◽  
Author(s):  
J. H. Underwood

Pressure vessels often have notches or other stress concentrations present. Considering further that pressure vessels are nearly always subjected to some cyclic loading, fatigue cracking at notches is an important problem. The objective here is to describe some fatigue life testing and analysis which was performed with notched specimens in order to determine the effects of notch overload on fatigue life of pressure vessels.


2012 ◽  
Vol 630 ◽  
pp. 59-63
Author(s):  
De Cheng Wan ◽  
Qing Wu Cai ◽  
Wei Yu ◽  
Xiao Lin Li ◽  
Chang Zheng Dong

The variation of microstructure and their effect on the mechanical properties of heavy plate for ship hull treated by quenching in full austenite region at 910°C once or twice and tempering, or quenching in full austenite region and quenching in intercritical austenite region at 840°C again and tempering were studied with SEM and TEM. It was found that the strength and low temperature toughness of the steel were higher after double quenching in full austenite region and tempering than the steel which was quenched once and tempering, because smaller bainite inter-lath spacing, finer grains were obtained. The steel treated by intercritical quenching at 840°C after quenching in full austenite region and tempering showed the best combination of mechanical properties. This can be attributed to comprehensive effect of the uniform distribution of ferrite and bainite, stronger grain refining effect caused by formation of ferrite.


2021 ◽  
Vol 1035 ◽  
pp. 312-317
Author(s):  
Peng Qi ◽  
Bo Long Li ◽  
Tong Bo Wang ◽  
Lian Zhou ◽  
Zuo Ren Nie

The effects of the heat treatment process parameters on the microstructure and mechanical properties of a selective laser melted (SLMed) AlSi10Mg alloy were systematically investigated. The SLMed AlSi10Mg alloy was treated with T1 (180°C× 4h + air cooling) process, which had the microstructure of fine α-Al grains, fine Si phase, and nano-sized precipitations. The microhardness significantly increased to 150 HV, which is even higher than as-SLMed one (126 HV). The microhardness of SLMed AlSi10Mg alloy treated with T4 (540°C × 2h + water cooling) heat-treatment process significantly decreased to 62 HV due to the growth of α-Al grains, Si phase and the formation of β-AlFeSi phase. However, the microhardness and ultimate tensile strength of AlSi10Mg alloy treated with T6 (540°C × 2 h water cool + 180°C × 4 h air cool) process decreased to 91 HV, although the strengthening precipitation of Mg2Si phase formed. It indicates that the Mg2Si phase cannot compensate for the adverse effect of grain growth. It may provide the best potential heat treatment method for fabricating the high strength SLMed AlSi10Mg alloy.


Sign in / Sign up

Export Citation Format

Share Document