Development of non-leaching and eco-friendly polyhexamethylene guanidine hydrochloride based antimicrobial waterborne polyacrylates

2017 ◽  
Vol 46 (6) ◽  
pp. 458-468
Author(s):  
Wei Ding ◽  
Kaimei Peng ◽  
Tao Zou ◽  
Ruonan Wang ◽  
Jinshan Guo ◽  
...  

Purpose The purpose of this paper is to develop non-leaching and eco-friendly antimicrobial waterborne polyacrylates with excellent antibacterial properties by grafting antibacterial vinyl monomer, glycidyl methacrylate (GMA) modified polyhexamethylene guanidine hydrochloride (PHMG). Design/methodology/approach PHMG of different molecular weights were modified by GMA to synthesize antibacterial vinyl monomer, GMA-modified PHMG (GPHMG). Different content and molecular weights of GPHMG were used to synthesize antimicrobial waterborne polyacrylates through emulsion polymerization. Findings The addition of GPHMG gained by modifying PHMG showed little influence on thermal stability of the films, but decreased the glass transition temperature(Tg). Meanwhile, the tensile strength decreased, while the breaking elongation increased. The antibacterial properties of the antibacterial films with different GPHMG contents were studied, when GPHMG content was around 0.9 Wt.%, antibacterial films showed excellent antibacterial activity (antibacterial rate >= 99.99 per cent). When weight content of GPHMG in the films remained constant, antibacterial property of films increased first and then decreased with the increase of molecular weight of GPHMG. The structural antibacterial polymer film had more perdurable antibacterial activity than the blended one. Research limitations/implications The grafting efficiency of GPHMG to antimicrobial waterborne polyacrylates could be further improved. Practical implications Antimicrobial waterborne polyacrylates with excellent antibacterial properties can be used to antibacterial coating and adhesive. Originality/value The antibacterial properties of films with different molecular weight of GPHMG were studied, and the durability and stability of antibacterial properties between structural antimicrobial films and blended antimicrobial films were also investigated by ring-diffusion method.

2020 ◽  
Vol 83 (1) ◽  
pp. 19-25
Author(s):  
Suntini Suntini ◽  
Anastasia Wheni Indrianingsih ◽  
Harjono Harjono

Recently, a wound healing from natural composite with excellent properties is in a high demand. In this study, a novel composite of bacterial cellulose made from Siwalan sap (Borassus flabellifer) was achieved. Siwalan is a common plant in Java Island of Indonesia and the application is very limited for beverage only. This study aims to determine the effect of the AgNO3/NaBH4 concentration ratio in the development of Ag-BC composites and its antibacterial properties from Siwalan sap. Ag-BC composites were prepared by impregnating the silver solution into the BC matrix through the reduction process with NaBH4. Characterization of Ag-BC composites conducted using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray (EDX). Antibacterial assay was performed using disc diffusion method against Salmonella typhimurium (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. The characterization of Ag-BC composite shows the nanostructure of BC with a length of fiber around 35-60 nm in width. The SEM-EDX micrograph showed that silver particles were impregnated into the BC matrix. Antibacterial activity test results showed that the Ag-BC composite had the ability to inhibit the bacteria S. typhimurium and S. aureus with good inhibition. This result showed the potential application of Ag-BC composite from Siwalan plant as a natural material for medical and pharmaceutical purpose, especially as an antibacterial agent.


Biomedika ◽  
2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Dr. Muhtadi , MSi. ◽  
Ria Ambarwati ◽  
Ratna Yuliani

Belimbing wuluh (Averrhoa bilimbi Linn.) is a tropical plant that has antibacterial properties. The purpose of this study was to test the antibacterial activity of bark Belimbing wuluh against Klebsiella pneumoniae and Staphylococcus epidermidis and their bioautography. Extraction methods used to research is method maceration with a solvent ethanol 96 %. Fractinations done by method partition liquid-liquid with a separating funnel. Test performed in this research covering identi� cation bacteria, the sensitivity bacteria, antibacterial activity, thin layer chromatography, bioautography. The result of antibacterial activity ethanol extract of disk diffusion method with concentrations 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8±0,5; 10,34±0,58; 12,17±0,76 on Klebsiella pneumoniae, 10,17±0,29; 11±0; 11.5±0 on Staphylococcus epidermidis, n-hexane fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8,34±0,29; 9,34±0,29; 10,84±0,76 on Klebsialla pneumoniae, 8,5±0,5; 9,34±0,29; 10,67±0,29 on Staphylococcus epidermidis, ethyl acetate fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 9,17±0,29; 10,34±0,29; 11,17±0,29 on Klebsiella pneumoniae and 9,5±0,5; 10,67±0,29; 12,67±1,26 on Staphylococcus epidermidis, ethanol-water fractions with concentration 400 μg/disk, 800 μg/ disk, 1600 μg/disk is 8,17±0,29; 9,17±0,29; 10±0 on Klebsiella pneumoniae, 9±0; 9,67±0,29; 10,34±0,29 on Staphylococcus epidermidis. The TLC show chemical compounds contained in the ethanol extract, n-heksan fraction, ethyl acetate fraction, and ethanol-water fraction is a compound of the saponins, alkaloids, � avonoids and phenolic. Bioautography showed that ethanol extracts, n-heksan faction, ethyl acetate fraction, and etanol-airfaction Belimbing wuluh (Averrhoa bilimbi Linn.) bark have not antibacterial activity because there is no clear area around on plate TLC.Keywords: Belimbing wuluh (Averrhoa bilimbi Linn.), ethanol extract, fractination, antibacterial, bioautogra� .


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xuan Nui Pham ◽  
Hoa Thi Nguyen ◽  
Ngan Thi Pham

In recent years, the green synthesis of nanoparticles via biological processes has attracted considerable attention. Herein, we introduce a facile and green approach for the synthesis of poriferous silver nanoparticles (Ag-NPs) decorated hydroxylapatite (HAp@Ag) nanoparticles with excellent antibacterial properties. All the nanocomposites were fully characterized in the solid state via various techniques such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectrometer (EDX), in which the synthesized Ag-NPs (24 nm in diameter) and their homogeneous incorporation on HAp have been studied by ultraviolet-visible (UV-vis) technique, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analysis. The obtained results indicate that the structure and morphology of HAp have no significant changes after the incorporation of Ag-NPs on its surface. Moreover, an impressive antibacterial activity of HAp@Ag nanocomposite against Gram-positive bacterium Staphylococcus aureus and Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa has been recorded by using the agar well diffusion method. As a result, the HAp@Ag nanocomposite promises to be a great biomedical material with high antibacterial properties.


2016 ◽  
Vol 1 (1-2) ◽  
pp. 05-09 ◽  
Author(s):  
Samuel L. Oputah ◽  
Kolawole O. Ajanaku ◽  
Raphael C. Mordi ◽  
Joseph A. O. Olugbuyiro ◽  
Shade J. Olorunshola ◽  
...  

Phytochemical and antibacterial properties of ethanolic extract of the seeds of African Star Apple (Chrysophyllum albidum) were investigated. The phytochemical result revealed the presence of saponins, carbohydrates, flavonoids, quinones, cardiac glycosides, fatty acids and terpenoids. The antibacterial activity was studied using agar well diffusion method at different concentrations against six pathogenic bacterial strains, three Gram-positive (Staphylococcus aureus, Micrococcus varians and Bacillus cereus) and three Gram-negative (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris). Significant inhibitory activities were exhibited by the ethanolic seed extracts for all test organisms except Bacillus cereus. Zone of inhibition of the crude ethanolic extract was correlated with that of a standard antibiotic Gentamicin, for antibacterial activity. The results indicated a notable inhibition of the bacterial growth.


Author(s):  
Dalila Razni ◽  
Linda Rouisset ◽  
Elhassan Benyagoub

This study is a part of the valorization of extract from three most commonly used Algerian spices, namely; caraway and cumin seeds and cinnamon bark. On the one hand, it aims at characterizing the chemical indices of extracted essential oils and evaluating the antibacterial activity of each essential oil by titration and disc diffusion method respectively. On the other hand, it attempts at evaluating the combined action of essential oils against four reference pathogenic bacterial strains, namely Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis by well and Chabbert-type diffusion method. The essential oils obtained by the hydrodistillation method have a relatively average extraction about 1.43, 2.3 and 2.5%, respectively for caraway, cumin, and cinnamon. The acid index indicates the behavior and amount of free acids present in the essential oil, in which the acid and saponification indices of cinnamon essential oil indicate a value of 4.48 and 168.56 respectively. It can also inform us about the susceptibility of the oil to undergo alterations. The antibacterial activity results showed that cinnamon essential oil (EO) proved to be the most active against the tested bacterial strains; caraway EO was active against Enterococcus faecalis, and the antibacterial action of cumin EO was the lowest. However, the association of the extracted essential oils has a higher synergistic effect than the independent effect of each essential oil, in which the MIC value found was estimated at 10 to 20 (V/V), 40 to 50 (V/V) and 50 to 70 (V/V) respectively for cinnamon, cumin and caraway. The obtained results show that the response to the antibacterial activity varies according to the plant species used and the extract tested alone or in combination.


2018 ◽  
pp. 52-56
Author(s):  
D. V. Tapalsky ◽  
K. M. Kosenkova

Objective : to study antibacterial properties of Hypogymnia physodes extract and its combinations with antibiotics against vancomycin-sensitive and vancomycin-resistant strains of enterococci. Material and methods. Minimum inhibitory concentrations (MICs) of the acetone extract of H. physodes for reference and clinical isolates of Enterococcus faecalis were determined by the serial broth dilution method. Evaluation of efficiency of the combined effect of the H. physodes extract in combination with antibiotics was carried out using the modified disc-diffusion method and «chessboard» method. Results. We have revealed marked antibacterial activity (MIC 32-64 mcg/ml) of the acetone extract of H. physodes against vancomycin-sensitive and vancomycin-resistant strains of enterococci and found a synergistic effect (ΣFIC from 0.125 to 0.375) of the combination of the H. physodes extract and aminoglycosides against E. faecalis , including vancomycin-resistant strains. Conclusion. H. physodes is a promising source of compounds with antibacterial activity, further research is required to identify and isolate a secondary metabolite having synergistic activity in combination with aminoglycosides from the lichen extract.


Author(s):  
Yuliati Yuliati

Turmeric is a spice plants that acts as an antibacterial, because it contains a variety of compounds including curcumin and essential oil. Essential oils can be used as an antibacterial because it contains hydroxyl and carbonyl functional group which is phenols derivative. Te phenol derivatives will interact with the bacterial cell wall, then absorbed and penetrated into the bacterial cell, causing precipitation and denaturation of proteins, the result will lyse the bacterial cell membrane, while the antibacterial activity of curcuminis by inhibiting bacterial cell proliferation. Turmeric has launched a pharmacological effect, lowering the fat content, asthma , hepatitis , anti- gall , anti- inflammatory , anti- diarrhea , and act as anti-inflammatory or anti-inflammatory. Turmeric has antibacterial properties of curcumin and essential oil that is capable of inhibiting the growth of bacteria that causes diarrhea and Shigelladysenteriae Bacillus sp. Tis study was conducted to determine the effectiveness of turmeric extract on the growth of Bacillus sp and Shigella dysenteriae, with various concentrations of 15%, 30%, 50%, 75%, and 100% by the well diffusion method. Based on theinhibition zone measurement of bacteria Bacillus sp and Shigella dysenteriaethe results were weak category, for the bacteria Bacillus sp with a concentration of 15 % , 30 % , 50 % , 75 % , and 100 % with a diameter of 11 ; 12.3 ; 13 , 3 ; 13.7 ; 14.7 mm, while for the bacteria Shigella dysenteriae with the same concentration has a diameter of 10.3 ; 11.7 ; 12.3 ; 13.3 , and 14.7 mm. Te conclusion of the study is that the antibacterial activity of turmeric extract is more effective against the bacteria Bacillus spthan against bacteria Shigella dysenteriae, although the difference was not signifcant.


2021 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Luthfiah Luthfiah ◽  
Dwi Setyati ◽  
Sattya Arimurti

Dumortiera hirsuta is one of the liverworts that can be used as a medicinal to prevent infection by pathogenic bacteria. The content of secondary metabolites of D. hirsuta has potential as antibacterial properties includes flavonoids, alkaloids and steroids. This research is to analyze the antibacterial activity of moss D. hirsuta against pathogenic bacteria that will be beneficial to humans. Liverworts of D. hirsuta were extracted using ethyl acetate solvent and tested against three types of pathogenic bacteria using the agar well-diffusion method. The results of this study indicated that the ethyl acetate extract of D. hirsuta at 100% concentration could inhibit the growth of Escherichia coli, Staphylococcus aureus, and Salmonella typhi bacteria. The range of antibacterial activity categories of the ethyl acetate extract of D. hirsuta to E. coli, S. aureus, and S. typhi between weak to moderate.


Author(s):  
PURIT PATTANAPANIT ◽  
SUNISA MITHONGLANG ◽  
SUNITA MITHONGLANG ◽  
SURACHAI TECHAOEI

Objective: The objective of this study was to evaluate the antimicrobial activity of volatile oils from aromatic plants against pathogenic bacteria.Methods: Thai aromatic plants such as Pogostemon cablin (Blanco) Benth (Patchouli oil), Cymbopogon nardus Rendle (Citronella grass oil), Pelargoniumroseum (Geranium oil), Syzygium aromaticum (L.) Merrill and Perry (clove oil), Cinnamomum spp.(cinnamon oil), and Cymbopogon citratus (DC.) Stapf.(lemongrass oil) were selected. Essential oils were obtained by water distillation and were stored at 4°C until use. Five human pathogenic bacteria wereobtained from Thai traditional Medicine College, Rajamangala University of Technology, Staphylococcus epidermidis, Escherichia coli, Staphylococcusaureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. The antibacterial activity of volatile oils was determined by disc-diffusionassay. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each essential oil were determined.Results: Our study showed that 10% of essential oil from Cinnamomum spp. was the most potential against S. aureus, MRSA, and E. coli when assayedby disc-diffusion method with inhibition zones ranging from 37.66±0.57 to 45.33±1.15 mm and from 29.33±0.57 to 36.00±1.00 for lemongrass oilwith MIC and MBC of 1.25%.Conclusion: From this study, it can be concluded that some essential oils have potential antibacterial activity. The present investigation providessupport to the antibacterial properties of essential oils and will be applied to health-care product as aroma antibacterial products.


Sign in / Sign up

Export Citation Format

Share Document