Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modeling

2017 ◽  
Vol 23 (5) ◽  
pp. 943-953 ◽  
Author(s):  
Anthony A. D’Amico ◽  
Analise Debaie ◽  
Amy M. Peterson

Purpose The aim of this paper is to examine the impact of layer thickness on irreversible thermal expansion, residual stress and mechanical properties of additively manufactured parts. Design/methodology/approach Samples were printed at several layer thicknesses, and their irreversible thermal expansion, tensile strength and flexural strength were determined. Findings Irreversible thermal strain increases with decreasing layer thickness, up to 22 per cent strain. Tensile and flexural strengths exhibited a peak at a layer thickness of 200 μm although the maximum was not statistically significant at a 95 per cent confidence interval. Tensile strength was 54 to 97 per cent of reported values for injection molded acrylonitrile butadiene styrene (ABS) and 29 to 73 per cent of those reported for bulk ABS. Flexural strength was 18 to 41 per cent of reported flexural strength for bulk ABS. Practical implications The large irreversible thermal strain exhibited that corresponding residual stresses could lead to failure of additively manufactured parts over time. Additionally, the observed irreversible thermal strains could enable thermally responsive shape in additively manufactured parts. Variation in mechanical properties with layer thickness will also affect manufactured parts. Originality/value Tailorable irreversible thermal strain of this magnitude has not been previously reported for additively manufactured parts. This strain occurs in parts made with both high-end and consumer grade fused deposition modeling machines. Additionally, the impact of layer thickness on tensile and flexural properties of additively manufactured parts has received limited attention in the literature.

2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2020 ◽  
Author(s):  
Muhammad Salman Mustafa ◽  
Muhammad Qasim Zafar ◽  
Muhammad Arslan Muneer ◽  
Muhammad Arif ◽  
Farrukh Arsalan Siddiqui ◽  
...  

Abstract Fused Deposition Modeling (FDM) is a widely adopted additive manufacturing process to produce complex 3D structures and it is typically used in the fabrication of biodegradable materials e.g. PLA/PHA for biomedical applications. However, FDM as a fabrication process for such material needs to be optimized to enhance mechanical properties. In this study, dogbone and notched samples are printed with the FDM process to determine optimum values of printing parameters for superior mechanical properties. The effect of layer thickness, infill density, and print bed temperature on mechanical properties is investigated by applying response surface methodology (RSM). Optimum printing parameters are identified for tensile and impact strength and an empirical relation has been formulated with response surface methodology (RSM). Furthermore, the analysis of variance (ANOVA) was performed on the experimental results to determine the influence of the process parameters and their interactions. ANOVA results demonstrate that 44.7% infill density, 0.44 mm layer thickness, and 20C° printing temperatures are the optimum values of printing parameters owing to improved tensile and impact strength respectively. The experimental results were found in strong agreement with the predicted theoretical results.


2017 ◽  
Vol 23 (5) ◽  
pp. 869-880 ◽  
Author(s):  
Ying-Guo Zhou ◽  
Bei Su ◽  
Lih-sheng Turng

Purpose Although the feasibility and effectiveness of the fused deposition modeling (FDM) method have been proposed and developed, studies of applying this technology to various materials are still needed for researching its applicability, especially with regard to polymer blends and composites. The purpose of this paper is to study the deposition-induced effect and the effect of compatibilizers on the mechanical properties of polypropylene and polycarbonate (PP/PC) composites. Design/methodology/approach For this purpose, three different deposition modes for PP/PC composites with or without compatibilizers were used for the FDM method and tested for tensile properties. Also, parts with the same materials were made by injection molding and used for comparison. In addition, different deposition speeds were used to investigate the different deposition-induced effects. Furthermore, the behavior of the mechanical properties was clarified with scanning electron microscope images of the fracture surfaces. Findings The research results suggest that the deposition orientation has a significant influence on the mechanical behavior of PP/PC composite FDM parts. The results also indicate that there is a close relationship between the mechanical properties and morphological structures which are deeply influenced by compatibilization. Compared with injection molded parts, the ductility of the FDM parts can be dramatically improved due to the formation of fibrils and micro-fibrils by the deposition induced during processing. Originality/value This is the first paper to investigate a PP/PC composite FDM process. The results of this paper verified the applicability of PP/PC composites to FDM technology. It is also the first time that the deposition-induced effect during FDM has been investigated and studied.


2021 ◽  
pp. 251659842110311
Author(s):  
Shrikrishna Pawar ◽  
Dhananjay Dolas1

Fused deposition modeling (FDM) is one of the most commonly used additive manufacturing (AM) technologies, which has found application in industries to meet the challenges of design modifications without significant cost increase and time delays. Process parameters largely affect the quality characteristics of AM parts, such as mechanical strength and surface finish. This article aims to optimize the parameters for enhancing flexural strength and surface finish of FDM parts. A total of 18 test specimens of polycarbonate (PC)-ABS (acrylonitrile–butadiene–styrene) material are printed to analyze the effect of process parameters, viz. layer thickness, build orientation, and infill density on flexural strength and surface finish. Empirical models relating process parameters with responses have been developed by using response surface regression and further analyzed by analysis of variance. Main effect plots and interaction plots are drawn to study the individual and combined effect of process parameters on output variables. Response surface methodology was employed to predict the results of flexural strength 48.2910 MPa and surface roughness 3.5826 µm with an optimal setting of parameters of 0.14-mm layer thickness and 100% infill density along with horizontal build orientation. Experimental results confirm infill density and build orientation as highly significant parameters for impacting flexural strength and surface roughness, respectively.


2020 ◽  
Vol 44 (1) ◽  
pp. 15-20
Author(s):  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
Rafał Oliwa ◽  
Grzegorz Budzik ◽  
Tadeusz Markowski

AbstractNew materials and filaments dedicated to 3D printing were obtained using the fused deposition modeling method, and the properties of the produced materials were investigated. Polylactide was used as a polymer base for the assays because of the desired properties of the polymer, mainly biodegradability, and the matrix was refilled by the addition of metallic nanofillers, such as bronze, copper, brass, and steel. For the composites obtained, mechanical properties were investigated to determine the dependence of the obtained results on the content and type of filler used and on the method of fabrication of the fittings. It was found that the additives present in the polymer matrix increased the fluidity of the material. The best results were obtained for the compositions with bronze and steel in which the mass flow rate was 72.97 and 79.99 g/10 min, respectively. The filled material that had lower hardness was measured by Rockwell and the impact strength was measured by Charpy. In addition, it was found that injection-molded parts obtained much better mechanical properties than those obtained by 3D printing.


2015 ◽  
Vol 21 (5) ◽  
pp. 604-617 ◽  
Author(s):  
Antonio Lanzotti ◽  
Marzio Grasso ◽  
Gabriele Staiano ◽  
Massimo Martorelli

Purpose – This study aims to quantify the ultimate tensile strength and the nominal strain at break (ɛf) of printed parts made from polylactic acid (PLA) with a Replicating Rapid prototyper (Rep-Rap) 3D printer, by varying three important process parameters: layer thickness, infill orientation and the number of shell perimeters. Little information is currently available about mechanical properties of parts printed using open-source, low-cost 3D printers. Design/methodology/approach – A computer-aided design model of a tensile test specimen was created, conforming to the ASTM:D638. Experiments were designed, based on a central composite design. A set of 60 specimens, obtained from combinations of selected parameters, was printed on a Rep-Rap Prusa I3 in PLA. Testing was performed using a JJ Instruments – T5002-type tensile testing machine and the load was measured using a load cell of 1,100 N. Findings – This study investigated the main impact of each process parameter on mechanical properties and the effects of interactions. The use of a response surface methodology allowed the proposition of an empirical model which connects process parameters and mechanical properties. Even though results showed a high variability, additional ideas on how to understand the impact of process parameters are suggested in this paper. Originality/value – On the basis of experimental results, it is possible to obtain practical suggestions to set common process parameters in relation to mechanical properties. Experiments discussed in the present paper provide a variety of data and insight regarding the relationship among the main process parameters and the stiffness and strength of fused deposition modeling-printed parts made from PLA. In particular, this paper underlines the shortage in existing literature concerning the impact of process parameters on the elastic modulus and the strain to failure for the PLA. The experimental data produced show a good degree of compliance with analytical formulations and other data found in literature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Debashis Mishra ◽  
Anil Kumar Das

PurposeThe purpose of the experimental investigation was to optimize the process parameters of the fused deposition modeling (FDM) technique. The optimization of the process was performed to identify the relationship between the chosen factors and the tensile strength of acrylonitrile butadiene styrene (ABS) and carbon fiber polylactic acid (PLA) thermoplastic material, FDM printed specimens. The relationship was demonstrated by using the linear experimental model analysis, and a prediction expression was established. The developed prediction expression can be used for the prediction of tensile strength of selected thermoplastic materials at a 95% confidence level.Design/methodology/approachThe Taguchi L9 experimental methodology was used to plan the total number of experiments to be performed. The process parameters were chosen as three at three working levels. The working range of chosen factors was the printing speed (60, 80 and 100mm/min), 40%, 60% and 80% as the infill density and 0.1mm, 0.2mm and 0.3mm as the layer thickness. The fused deposition modeling process parameters were optimized to get the maximum tensile strength in FDM printed ABS and carbon fiber PLA thermoplastic material specimens.FindingsThe optimum condition was achieved by the process optimization, and the desired results were obtained. The maximum desirability was achieved as 0.98 (98%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.3mm. The strength of the ABS specimen was predicted to be 23.83MPa. The observed strength value was 23.66MPa. The maximum desirability was obtained as 1 (100%) for the factors, printing speed 100mm/min, infill density 60mm and layer thickness 0.2mm. The strength of the carbon fiber PLA specimen was predicted to be 26.23MPa, and the obtained value was 26.49MPa.Research limitations/implicationsThe research shows the useful process parameters and their suitable working conditions to print the tensile specimens of the ABS and carbon fiber PLA thermoplastics by using the fused deposition modeling technique. The process was optimized to identify the most influential factor, and the desired optimum condition was achieved at which the maximum tensile strength was reported. The produced prediction expression can be used to predict the tensile strength of ABS and carbon fiber PLA filaments.Practical implicationsThe results obtained from the experimental investigation are useful to get an insight into the FDM process and working limits to print the parts by using the ABS and carbon fiber PLA material for various industrial and structural applications.Social implicationsThe results will be useful in choosing the suitable thermoplastic filament for the various prototyping and structural applications. The products that require freedom in design and are difficult to produce by most of the conventional techniques can be produced at low cost and in less time by the fused deposition modeling technique.Originality/valueThe process optimization shows the practical exposures to state an optimum working condition to print the ABS and carbon fiber PLA tensile specimens by using the FDM technique. The carbon fiber PLA shows better strength than ABS thermoplastic material.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Pilar Valerga Puerta ◽  
J.D. Lopez-Castro ◽  
Adrián Ojeda López ◽  
Severo Raúl Fernández Vidal

Purpose Fused filament fabrication or fused deposition modeling (FFF/FDM) has as one of its main restrictions the surface quality intrinsic to the process, especially linked to the layer thickness used during manufacture. The purpose of this paper is to study the possibility of improving the surface quality of polylactic acid (PLA) parts manufactured by FFF using the shot blasting technique. Design/methodology/approach The influence of corundum blasting on 0.2 mm layer thickness FDM PLA parts treated with two sizes of abrasive, different exposure times and different incidence pressures. Findings As a result, improvements of almost 80% were obtained in the surface roughness of the pieces with high exposure times, and more than 50% in just 20 s. Originality/value This technique is cheap, versatile and adaptable to different part sizes and geometries. Furthermore, it is a fast and environmentally friendly technique compared to conventional machining or vapor smoothing. Despite this, no previous studies have been carried out to improve the quality of this technology.


2016 ◽  
Vol 22 (2) ◽  
pp. 387-404 ◽  
Author(s):  
Jonathan Torres ◽  
Matthew Cole ◽  
Allen Owji ◽  
Zachary DeMastry ◽  
Ali P. Gordon

Purpose This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with polylactic acid (PLA) as a media and relate the practical and experimental implications of these as related to stiffness, strength, ductility and generalized loading. Design/methodology/approach A two-factor-level Taguchi test matrix was defined to allow streamlined mechanical testing of several different fabrication settings using a reduced array of experiments. Specimens were manufactured and tested according to ASTM E8/D638 and E399/D5045 standards for tensile and fracture testing. After initial analysis of mechanical properties derived from mechanical tests, analysis of variance was used to infer optimized production variables for general use and for application/load-specific instances. Findings Production variables are determined to yield optimized mechanical properties under tensile and fracture-type loading as related to orientation of loading and fabrication. Practical implications The relation of production variables and their interactions and the manner in which they influence mechanical properties provide insight to the feasibility of using FDM for rapid manufacturing of components for experimental, commercial or consumer-level use. Originality/value This paper is the first report of research on the characterization of the mechanical properties of PLA coupons manufactured using FDM by the Taguchi method. The investigation is relevant both in commercial and consumer-level aspects, given both the currently increasing utilization of 3D printers for component production and the viability of PLA as a renewable, biocompatible material for use in structural applications.


2019 ◽  
Vol 25 (7) ◽  
pp. 1145-1154 ◽  
Author(s):  
Xia Gao ◽  
Daijun Zhang ◽  
Xiangning Wen ◽  
Shunxin Qi ◽  
Yunlan Su ◽  
...  

Purpose This work aims to develop a new kind of semicrystalline polymer filament and optimize its printing parameters in the fused deposition modeling process. The purpose of this work also includes producing FDM parts with good ductility. Design/methodology/approach A new kind of semicrystalline filaments composed of long-chain polyamide (PA)1012 was prepared by controlling screw speed and pulling speed carefully. The optimal printing parameters for PA1012 filaments were explored through investigating dimensional accuracy and bonding strength of FDM parts. Furthermore, the mechanical properties of PA1012 specimens were also evaluated by varying nozzle temperatures and raster angles. Findings It is found that PA1012 filaments can accommodate for FDM process under suitable printing parameters. The print quality and mechanical properties of FDM parts highly depend on nozzle temperature and bed temperature. Even though higher temperatures facilitate stronger interlayer bonding, FDM parts with excellent tensile strength were obtained at a moderate nozzle temperature. Moreover, a bed temperature well above the glass transition temperature of PA1012 can eliminate shrinkage and distortion of FDM parts. As expected, FDM parts prepared with PA1012 filaments exhibit good ductility. Originality/value Results in this work demonstrate that the PA1012 filament allows the production of FDM parts with desired mechanical performance. This indicates the potential for overcoming the dependence on amorphous thermoplastics as a feedstock in the FDM technique. This work also provides insight into the effect of materials properties on the mechanical performance of FDM-printed parts.


Sign in / Sign up

Export Citation Format

Share Document