bed temperature
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 93)

H-INDEX

20
(FIVE YEARS 5)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 385
Author(s):  
Ruben Vande Ryse ◽  
Mariya Edeleva ◽  
Ortwijn Van Stichel ◽  
Dagmar R. D’hooge ◽  
Frederik Pille ◽  
...  

Additive manufacturing (AM) of polymeric materials offers many benefits, from rapid prototyping to the production of end-use material parts. Powder bed fusion (PBF), more specifically selective laser sintering (SLS), is a very promising AM technology. However, up until now, most SLS research has been directed toward polyamide powders. In addition, only basic models have been put forward that are less directed to the identification of the most suited operating conditions in a sustainable production context. In the present combined experimental and theoretical study, the impacts of several SLS processing parameters (e.g., laser power, part bed temperature, and layer thickness) are investigated for a thermoplastic elastomer polyester by means of colorimetric, morphological, physical, and mechanical analysis of the printed parts. It is shown that an optimal SLS processing window exists in which the printed polyester material presents a higher density and better mechanical properties as well as a low yellowing index, specifically upon using a laser power of 17–20 W. It is further highlighted that the current models are not accurate enough at predicting the laser power at which thermal degradation occurs. Updated and more fundamental equations are therefore proposed, and guidelines are formulated to better assess the laser power for degradation and the maximal temperature achieved during sintering. This is performed by employing the reflection and absorbance of the laser light and taking into account the particle size distribution of the powder material.


Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Suzana Ioana Calcan ◽  
Oana Cristina Pârvulescu ◽  
Violeta Alexandra Ion ◽  
Cristian Eugen Răducanu ◽  
Liliana Bădulescu ◽  
...  

The paper aimed at studying the slow pyrolysis of vine pruning waste in a fixed bed reactor and characterizing the pyrolysis products. Pyrolysis experiments were conducted for 60 min, using CO2 as a carrier gas and oxidizing agent. The distribution of biochar and bio-oil was dependent on variations in heat flux (4244–5777 W/m2), CO2 superficial velocity (0.004–0.008 m/s), and mean size of vegetal material (0.007–0.011 m). Relationships among these factors and process performances in terms of yields of biochar (0.286–0.328) and bio-oil (0.260–0.350), expressed as ratio between the final mass of pyrolysis product and initial mass of vegetal material, and final value of fixed bed temperature (401.1–486.5 °C) were established using a 23 factorial design. Proximate and ultimate analyses, FT-IR and SEM analyses, measurements of bulk density (0.112 ± 0.001 g/cm3), electrical conductivity (0.55 ± 0.03 dS/m), pH (10.35 ± 0.06), and water holding capacity (58.99 ± 14.51%) were performed for biochar. Water content (33.2 ± 1.27%), density (1.027 ± 0.014 g/cm3), pH (3.34 ± 0.02), refractive index (1.3553 ± 0.0027), and iodine value (87.98 ± 4.38 g I2/100 g bio-oil) were measured for bio-oil. Moreover, chemical composition of bio-oil was evaluated using GC-MS analysis, with 27 organic compounds being identified.


CFD Letters ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1-20
Author(s):  
Muhammad Shahrul Nizam Shahrin ◽  
Norazila Othman ◽  
Nik Ahmad Ridhwan Nik Mohd ◽  
Mastura Ab Wahid ◽  
Mohd Zarhamdy Md. Zain

In monopropellant system, hydrogen peroxide is used with catalyst to create an exothermic reaction. Catalyst made of silver among the popular choice for this application. Since the catalyst used is in porous state, the effect of its porosity in the hydrogen peroxide monopropellant thruster performances is yet unknown. The porosity changes depending on factors including catalyst pact compaction pressure, bed dimension, and type of catalyst used. As researches on this topic is relatively small, the optimum porosity value is usually left out. The performance of the thruster indicated by the pressure drop across the catalyst bed. Porosity of the catalyst bed adds additional momentum sink to the momentum equation that contributes to the pressure gradient which lead to pressure loss inside thruster. The effect of porosity influences the performance and precision of the thruster. Study of the pressure drop by the catalyst bed requires a lengthy period and expensive experiments, however, numerical simulation by mean of Computational Fluid Dynamics (CFD) can be an alternative. In this paper, 90 wt% hydrogen peroxide solution with silver catalyst is studied in order to investigate the influence of porosity to the performances of the thruster, and to find the optimum porosity of the thruster. Species transport model is applied in the single-phase reaction simulation using the EDM for turbulence-chemistry interaction. Through this study, the effect of porosity towards the thruster performances represented in term of pressure drop, exit velocity, bed temperature, and thrust, and porosity of 0.4 found to be as an optimal value.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Fangyan Chen ◽  
Liwen Xu ◽  
Guozhong Lv ◽  
Yugang Zhu ◽  
Jiang Chang ◽  
...  

The nursing care of patients with extensive burns by using multifunctional intelligent suspension treatment beds was studied. 40 patients, including 30 males and 10 females, with extensive burns were nursed using multifunctional intelligent suspension treatment beds. First of all, the patients were given psychological care, which was patiently explained, so that they can overcome their fears and be treated with peace of mind. Second, the room temperature and bed temperature were closely monitored. Finally, special attention was paid to the adjustment of rehydration volume, regular detection of plasma electrolytes, prevention of electrolyte disorder, and dehydration. Besides, disinfection and isolation should be performed when using. The results showed that 4 cases (20%) were positive in group A and 8 cases (40%) were positive in group B on the 10th day after injury X 2 = 4.005 , and the incidence of wound infection in group A was significantly lower than that in group B. The use of suspension beds in patients with extensive burns makes them safe and comfortable, and the whole body wound scabs healed faster, as well as the infection was minimized. A suspended bed is especially suitable for the clinical treatment of patients with extensive burns. The advantages of suspended bed can be fully realized by summarizing clinical experience.


2021 ◽  
Vol 943 (1) ◽  
pp. 012014
Author(s):  
Jingyin Liu ◽  
Zhijun Peng

Abstract As regulations for controlling VOCs (Volatile Organic Compounds) emissions have become more and more stringent, RTO (Regenerative Thermal Oxidizer) which involves heat exchange and storage, combustion and reaction processes has to be further optimised for enhancing the VOC treatment efficiency and reducing energy consumption. In this paper, influences of operating temperature distributions and internal flow fields on gas-out VOC concentration have been studied with experimental investigation and CFD numerical simulation. Experimental results shows that combustion temperature (around the combustor) plays more critical role than thermal storage bed temperature for affecting VOC flow-out concentration. By examining the internal flow and temperature distributions, modelling results demonstrate that fast heat transfer takes place in thermal ceramic beds and high temperature areas are formed around the combustor. At about 20 seconds after a bed working for gas-in flow, the heat transfer has demonstrated obvious attenuating. The research suggests that it is very challenging for simultaneously maintaining low gas-out VOC concentration and keeping low fuel consumption and low combustion temperature in RTOs.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4213
Author(s):  
Tomáš Tichý ◽  
Ondřej Šefl ◽  
Petr Veselý ◽  
Karel Dušek ◽  
David Bušek

This work presented an FEM (finite element method) mathematical model that describes the temperature distribution in different parts of a 3D printer based on additive manufacturing process using filament extrusion during its operation. Variation in properties also originate from inconsistent choices of process parameters employed by individual manufacturers. Therefore, a mathematical model that calculates temperature changes in the filament (and the resulting print) during an FFF (fused filament fabrication) process was deemed useful, as it can estimate otherwise immeasurable properties (such as the internal temperature of the filament during the printing). Two variants of the model (both static and dynamic) were presented in this work. They can provide the user with the material’s thermal history during the print. Such knowledge may be used in further analyses of the resulting prints. Thanks to the dynamic model, the cooling of the material on the printing bed can be traced for various printing speeds. Both variants simulate the printing of a PLA (Polylactic acid) filament with the nozzle temperature of 220 °C, bed temperature of 60 °C, and printing speed of 5, 10, and 15 m/s, respectively.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samir Kasmi ◽  
Geoffrey Ginoux ◽  
Eric Labbé ◽  
Sébastien Alix

Purpose The purpose of this study is to test a flexible polymer with different characteristics compared to other classical polymers mostly used in the additive manufacturing process, and to improve its mechanical properties and microstructure, by modifying different printing parameters, to make it more suitable for various industrial applications. Design/methodology/approach Seven parameters were tested, namely, nozzle temperature, bed temperature, layer thickness, printing speed, flow rate, printing time gap between two successive printed layers and raster orientation. Rheological characterizations were conducted to evaluate the influence of nozzle temperature on the melt viscosity of thermoplastic polyurethane (TPU). The effect of thermal printing parameters on the crystallinity behavior was explored. Tomographic characterizations were realized to measure the porosity and evaluate the internal structure quality of printed specimens. Findings Increases of the nozzle temperature, bed temperature, layer thickness and flow rate had a positive influence on the tensile strength properties of TPU with a reduction of porosity. Higher printing speeds created defects and negatively influenced the strength properties of TPU. An increase in the printing time gap between layers led to poor interlayer adhesion and decreased the tensile strength. Specimens with layers all oriented parallel to the loading direction exhibited superior mechanical properties compared to other raster orientations. Originality/value Thermoplastic elastomers are a unique class of polymers characterized by the combined thermal, chemical and mechanical properties of their elastomer and thermoplastic parts. TPU elastomer, as one of the elastomer families, has found an important position in the bioengineering and three-dimensional printing industry. This study reports a comprehensive study of the impact of additive manufacturing parameters on the properties of TPU.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7070
Author(s):  
Jakub Ramian ◽  
Jan Ramian ◽  
Daniel Dziob

This research focuses on thermal deformations of thermoplast during three-dimensional printing. A filament acrylonitrile butadiene styrene was used, and the main focus was put on warping. Twenty-seven cuboids divided in six categories by their length, height, surface area, color, nozzle temperature and bed temperature were printed by Fused Filament Fabrication 3D printer. The whole process was captured by a thermal camera and the movies were used to analyze the temperature distribution during printing. All printouts were measured and scanned with a 3D scanner in order to highlight any abbreviations from the original digital models. The obtained results were used to formulate some general conclusions on the influence of selected parameters on the warping process. Based on the outcomes of the study, a set of guidelines on how to minimalize warping was proposed.


Author(s):  
Sunil Dutt Baloni ◽  
Somesh K. Sharma ◽  
Jagroop Singh ◽  
Sushant Negi

The contribution of selective laser sintering (SLS) technique in the 4.0 manufacturing industry is undisputedly significant. SLS part quality exhibits high dependence on SLS process parameters and is a major challenge. Therefore, this research aims to investigate the effect of input parameters (i.e., part orientation, bed temperature, and layer thickness) on the surface roughness and accuracy of laser-sintered polyamide specimens. Response surface methodology (RSM) and ANOVA analysis aided the testing and evaluation. Optimal working conditions for minimum shrinkage were 0.17 mm layer thickness, 177.89°C part bed temperature, and part orientation at 88.91 degrees. The surface quality deteriorated with the increment in part bed temperature and layer thickness, and it shows an inverse trend (or improves) with the part orientation in the prescribed range. The optimal surface roughness was at a layer thickness of 0.11 mm, bed temperature at 174.55°C, and part orientation at 86.5 degrees.


Sign in / Sign up

Export Citation Format

Share Document