The mechanism of process parameters influencing the AlSi10Mg side surface quality fabricated via laser powder bed fusion

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shimin Dai ◽  
Hailong Liao ◽  
Haihong Zhu ◽  
Xiaoyan Zeng

Purpose For the laser powder bed fusion (L-PBF) technology, the side surface quality is essentially important for industrial applicated parts, such as the inner flow parts. Contour is generally adopted at the parts’ outline to enhance the side surface quality. However, the side surface roughness (Ra) is still larger than 10 microns even with contour in previous studies. The purpose of this paper is to study the influence of contour process parameters, laser power and scanning velocity on the side surface quality of the AlSi10Mg sample. Design/methodology/approach Using L-PBF technology to manufacture AlSi10Mg samples under different contour process parameters, use a laser confocal microscope to capture the surface information of the samples, and obtain the surface roughness Ra and the maximum surface height Rz of each sample after analysis and processing. Findings The results show that the side surface roughness decreases with the increase of the laser power at the fixed scanning velocity of 1,000 mm/s, the side surface roughness Ra stays within the error range as the contour velocity increases. It is found that the Ra increases with the scanning velocity increasing and the greater the laser power with the greater Ra increases when the laser power of contour process parameters is 300 W, 350 W and 400 W. The Rz maintain growth with the contour scanning velocity increasing at constant laser power. The continuous uniform contour covers the pores in the molten pool of the sample edge and thus increase the density of the sample. Two mechanisms named “Active adhesion” and “Passive adhesion” cause sticky powder. Originality/value Formation of a uniform and even contour track is key to obtain the good side surface quality. The side surface quality is determined by the uniformity and stability of the contour track when the layer thickness is fixed. These research results can provide helpful guidance to improve the surface quality of L-PBF manufactured parts.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abid Ullah ◽  
HengAn Wu ◽  
Asif Ur Rehman ◽  
YinBo Zhu ◽  
Tingting Liu ◽  
...  

Purpose The purpose of this paper is to eliminate Part defects and enrich additive manufacturing of ceramics. Laser powder bed fusion (L-PBF) experiments were carried to investigate the effects of laser parameters and selective oxidation of Titanium (mixed with TiO2) on the microstructure, surface quality and melting state of Titania. The causes of several L-PBF parts defects were thoroughly analyzed. Design/methodology/approach Laser power and scanning speed were varied within a specific range (50–125 W and 170–200 mm/s, respectively). Furthermore, varying loads of Ti (1%, 3%, 5% and 15%) were mixed with TiO2, which was selectively oxidized with laser beam in the presence of oxygen environment. Findings Part defects such as cracks, pores and uneven grains growth were widely reduced in TiO2 L-PBF specimens. Increasing the laser power and decreasing the scanning speed shown significant improvements in the surface morphology of TiO2 ceramics. The amount of Ti material was fully melted and simultaneously changed into TiO2 by the application of the laser beam. The selective oxidation of Ti material also improved the melting condition, microstructure and surface quality of the specimens. Originality/value TiO2 ceramic specimens were produced through L-PBF process. Increasing the laser power and decreasing the scanning speed is an effective way to sufficiently melt the powders and reduce parts defects. Selective oxidation of Ti by a high power laser beam approach was used to improve the manufacturability of TiO2 specimens.


2018 ◽  
Vol 24 (1) ◽  
pp. 150-159 ◽  
Author(s):  
Zhonghua Li ◽  
Ibrahim Kucukkoc ◽  
David Z. Zhang ◽  
Fei Liu

Purpose Surface roughness is an important evaluation index for industrial components, and it strongly depends on the processing parameters for selective laser molten Ti6Al4V parts. This paper aims to obtain an optimum selective laser melting (SLM) parameter set to improve the surface roughness of Ti6Al4V samples. Design/methodology/approach A response surface methodology (RSM)-based approach is proposed to improve the surface quality of selective laser molten Ti6Al4V parts and understand the relationship between the SLM process parameters and the surface roughness. The main SLM parameters (i.e. laser power, scan speed and hatch spacing) are optimized, and Ti6Al4V parts are manufactured by the SLM technology with no post processes. Findings Optimum process parameters were obtained using the RSM method to minimise the roughness of the top and vertical side surfaces. Obtained parameter sets were evaluated based on their productivity and surface quality performance. The validation tests have been performed, and the results verified the effectivity of the proposed technique. It was also shown that the top and vertical sides must be handled together to obtain better top surface quality. Practical implications The obtained optimum SLM parameter set can be used in the manufacturing of Ti6Al4V components with high surface roughness requirement. Originality/value RSM is used to analyse and determine the optimal combination of SLM parameters with the aim of improving the surface roughness quality of Ti6Al4V components, for the first time in the literature. Also, this is the first study which aims to simultaneously optimise the surface quality of top and vertical sides of titanium alloys.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1323
Author(s):  
Yanlong Jing ◽  
Peng Wang ◽  
Xiaoling Yan

To improve the quality of thick powder bed and realize the matching of thick powder bed and thin powder bed in the later stage, the influence of process parameters for the single-track, multi-layer fabrication, relative density, surface quality, defect, remelting, and boundary optimization performance of different layer thicknesses of Ti-6Al-4V fabricated by selective laser melting were investigated. It is more conducive to the stable forming of single-track when the point distance is half the diameter of the laser beam, and the exposure time is appropriately extended. The thin powder bed needs the corresponding point distance and exposure time under the laser power of 280–380 W to obtain high-density specimens. The thick powder bed needs to be able to ensure the formation of high-quality specimens under the smaller point distance and longer exposure time under higher laser power of 380 W. Both thick powder bed and thin powder bed will cause un-melted defects between molten pools, spheroidization defects caused by splashing, and microporous defects. The remelting process can significantly improve the surface quality of the formed specimen, but the surface quality of the thick powder bed is worse than that of the thin powder bed. The boundary quality of thick powder bed is worse than that of thin powder bed, and the boundary shape has a greater influence on the quality of the SLM forming boundary. Different strategies should be adopted to form the boundary of different shapes. Increasing the boundary count and increasing the laser power are more conducive to the improvement of boundary quality.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538 ◽  
Author(s):  
Fabrizia Caiazzo ◽  
Vittorio Alfieri ◽  
Giuseppe Casalino

Laser powder bed fusion (LPBF) can fabricate products with tailored mechanical and surface properties. In fact, surface texture, roughness, pore size, the resulting fractional density, and microhardness highly depend on the processing conditions, which are very difficult to deal with. Therefore, this paper aims at investigating the relevance of the volumetric energy density (VED) that is a concise index of some governing factors with a potential operational use. This paper proves the fact that the observed experimental variation in the surface roughness, number and size of pores, the fractional density, and Vickers hardness can be explained in terms of VED that can help the investigator in dealing with several process parameters at once.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
You-Cheng Chang ◽  
Hong-Chuong Tran ◽  
Yu-Lung Lo

Purpose Laser powder bed fusion (LPBF) provides the means to produce unique components with almost no restriction on geometry in an extremely short time. However, the high-temperature gradient and high cooling rate produced during the fabrication process result in residual stress, which may prompt part warpage, cracks or even baseplate separation. Accordingly, an appropriate selection of the LPBF processing parameters is essential to ensure the quality of the built part. This study, thus, aims to develop an integrated simulation framework consisting of a single-track heat transfer model and a modified inherent shrinkage method model for predicting the curvature of an Inconel 718 cantilever beam produced using the LPBF process. Design/methodology/approach The simulation results for the curvature of the cantilever beam are calibrated via a comparison with the experimental observations. It is shown that the calibration factor required to drive the simulation results toward the experimental measurements has the same value for all settings of the laser power and scanning speed. Representative combinations of the laser power and scanning speed are, thus, chosen using the circle packing design method and supplied as inputs to the validated simulation framework to predict the corresponding cantilever beam curvature and density. The simulation results are then used to train artificial neural network models to predict the curvature and solid cooling rate of the cantilever beam for any combination of the laser power and scanning speed within the input design space. The resulting processing maps are screened in accordance with three quality criteria, namely, the part density, the radius of curvature and the solid cooling rate, to determine the optimal processing parameters for the LPBF process. Findings It is shown that the parameters lying within the optimal region of the processing map reduce the curvature of the cantilever beam by 17.9% and improve the density by as much as 99.97%. Originality/value The present study proposes a computational framework, which could find the parameters that not only yield the lowest distortion but also produce fully dense components in the LPBF process.


2020 ◽  
Vol 26 (1) ◽  
pp. 100-106 ◽  
Author(s):  
Tobias Kolb ◽  
Reza Elahi ◽  
Jan Seeger ◽  
Mathews Soris ◽  
Christian Scheitler ◽  
...  

Purpose The purpose of this paper is to analyse the signal dependency of the camera-based coaxial monitoring system QMMeltpool 3D (Concept Laser GmbH, Lichtenfels, Germany) for laser powder bed fusion (LPBF) under the variation of process parameters, position, direction and layer thickness to determine the capability of the system. Because such and similar monitoring systems are designed and presented for quality assurance in series production, it is important to present the dominant signal influences and limitations. Design/methodology/approach Hardware of the commercially available coaxial monitoring QMMeltpool 3D is used to investigate the thermal emission of the interaction zone during LPBF. The raw images of the camera are analysed by means of image processing to bypass the software of QMMeltpool 3D and to gain a high level of signal understanding. Laser power, scan speed, laser spot diameter and powder layer thickness were varied for single-melt tracks to determine the influence of a parameter variation on the measured sensory signals. The effects of the scan direction and position were also analysed in detail. The influence of surface roughness on the detected sensory signals was simulated by a machined substrate plate. Findings Parameter variations are confirmed to be detectable. Because of strong directional and positional dependencies of the melt-pool monitoring signal a calibration algorithm is necessary. A decreasing signal is detected for increasing layer thickness. Surface roughness is identified as a dominating factor with major influence on the melt-pool monitoring signal exceeding other process flaws. Research limitations/implications This work was performed with the hardware of a commercially available QMMeltpool 3D system of an LPBF machine M2 of the company Concept Laser GmbH. The results are relevant for all melt-pool monitoring research activities connected to LPBF, as well as for end users and serial production. Originality/value Surface roughness has not yet been revealed as being one of the most important origins for signal deviations in coaxial melt-pool monitoring. To the best of the authors’ knowledge, the direct comparison of influences because of parameters and environment has not been published to this extent. The detection, evaluation and remelting of surface roughness constitute a plausible workflow for closed-loop control in LPBF.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3770
Author(s):  
Olutayo Adegoke ◽  
Joel Andersson ◽  
Håkan Brodin ◽  
Robert Pederson

The manufacturing of parts from nickel-based superalloy Alloy 247LC by laser powder bed fusion (L-PBF) is challenging, primarily owing to the alloy’s susceptibility to cracks. Apart from the cracks, voids created during the L-PBF process should also be minimized to produce dense parts. In this study, samples of Alloy 247LC were manufactured by L-PBF, several of which could be produced with voids and crack density close to zero. A statistical design of experiments was used to evaluate the influence of the process parameters, namely laser power, scanning speed, and hatch distance (inherent to the volumetric energy density) on void formation, crack density, and microhardness of the samples. The window of process parameters, in which minimum voids and/or cracks were present, was predicted. It was shown that the void content increased steeply at a volumetric energy density threshold below 81 J/mm3. The crack density, on the other hand, increased steeply at a volumetric energy density threshold above 163 J/mm3. The microhardness displayed a relatively low value in three samples which displayed the lowest volumetric energy density and highest void content. It was also observed that two samples, which displayed the highest volumetric energy density and crack density, demonstrated a relatively high microhardness; which could be a vital evidence in future investigations to determine the fundamental mechanism of cracking. The laser power was concluded to be the strongest and statistically most significant process parameter that influenced void formation and microhardness. The interaction of laser power and hatch distance was the strongest and most significant factor that influenced the crack density.


2020 ◽  
Vol 26 (10) ◽  
pp. 1827-1836
Author(s):  
Christopher Gottlieb Klingaa ◽  
Sankhya Mohanty ◽  
Jesper Henri Hattel

Purpose Conformal cooling channels in additively manufactured molds are superior over conventional channels in terms of cooling control, part warpage and lead time. The heat transfer ability of cooling channels is determined by their geometry and surface roughness. Laser powder bed fusion manufactured channels have an inherent process-induced dross formation that may significantly alter the actual shape of nominal channels. Therefore, it is crucial to be able to predict the expected surface roughness and changes in the geometry of metal additively manufactured conformal cooling channels. The purpose of this paper is to present a new methodology for predicting the realistic design of laser powder bed fusion channels. Design/methodology/approach This study proposes a methodology for making nominal channel design more realistic by the implementation of roughness prediction models. The models are used for altering the nominal shape of a channel to its predicted shape by point cloud analysis and manipulation. Findings A straight channel is investigated as a simple case study and validated against X-ray computed tomography measurements. The modified channel geometry is reconstructed and meshed, resulting in a predicted, more realistic version of the nominal geometry. The methodology is successfully tested on a torus shape and a simple conformal cooling channel design. Finally, the methodology is validated through a cooling test experiment and comparison with simulations. Practical implications Accurate prediction of channel surface roughness and geometry would lead toward more accurate modeling of cooling performance. Originality/value A robust start to finish method for realistic geometrical prediction of metal additive manufacturing cooling channels has yet to be proposed. The current study seeks to fill the gap.


2017 ◽  
Vol 23 (6) ◽  
pp. 1202-1211 ◽  
Author(s):  
Sanjay Kumar ◽  
Aleksander Czekanski

Purpose WC-Co is a well-known material for conventional tooling but is not yet commercially available for additive manufacturing. Processing it by selective laser sintering (SLS) will pave the way for its commercialization and adoption. Design/methodology/approach It is intended to optimize process parameters (laser power, hatch spacing, scan speed) by fabricating a bigger part (minimum size of 10 mm diameter and 5 mm height). Microstructural analysis, EDX and hardness testing is used to study effects of process parameters. Optimized parameter is ascertained after fabricating 49 samples in preliminary experiment, 27 samples in pre-final experiment and 9 samples in final experiment. Findings Higher laser power gives rise to cracks and depletion of cobalt while higher scan speed increases porosity. Higher hatch spacing is responsible for delamination and displacement of parts. Optimized parameters are 270 W laser power, 500 mm/s scan speed, 0.04 mm layer thickness, 0.04 mm hatch spacing (resulting in energy density of 216 J/mm3) and 200°C powder bed temperature. A part comprising of small hole of 2 mm diameter, thin cylindrical pin of 0.5 mm diameter and thin wall of 2 mm width bent up to 30° angle to the base plate is fabricated. In order to calculate laser energy density, a new equation is introduced which takes into account both beam diameter and hatch spacing unlike old equation does. In order to calculate laser energy density, a new equation is formulated which takes into account both beam diameter and hatch spacing unlike old equation does. WC was not completely melted as intended giving rise to partial melting-type binding mechanism. This justified the name SLS for process in place of SLM (Selective Laser Melting). Research limitations/implications Using all possible combination of parameters plus heating the part bed to maximum shows limitation of state-of-the-art commercial powder bed fusion machine for shaping hardmetal consisting of high amount of WC (83 wt. per cent). Practical implications The research shows that microfeatures could be fabricated using WC-Co which will herald renewed interest in investigating hardmetals using SLS for manufacturing complex hard tools, molds and wear-resistance parts. Originality/value This is the first time micro features are successfully fabricated using WC-Co without post-processing (infiltration, machining) and without the help of additional binding material (such as Cu, Ni, Fe).


Sign in / Sign up

Export Citation Format

Share Document