Realization of full state feedback via delayed output feedback

Author(s):  
Zheng Liu ◽  
Bingen Yang
2011 ◽  
Vol 130-134 ◽  
pp. 2876-2880
Author(s):  
Qiang He

Conventional single closed-loop system of DC motor with speed-feedback has poor performance when some stochastic disturbances take place. To handle this shortcoming, the control system with full-state feedback and integral output feedback of DC motor is proposed. The state-space model of the full-state feedback of DC motors is established. The feedback gains of the control system are optimized by Particle Swarm Optimization algorithms based the simulation model. The simulation results show that the control system with full-state feedback of DC motors has better dynamic performance.


Author(s):  
Mustefa Jibril ◽  
Messay Tadese ◽  
Roman Jirma

In this paper, a metal cutting machine position control have been designed and simulated using Matlab/Simulink Toolbox successfully. The open loop response of the system analysis shows that the system needs performance improvement. Static output feedback and full state feedback H2 controllers have been used to increase the performance of the system. Comparison of the metal cutting machine position using static output feedback and full state feedback H2 controllers have been done to track a set point position using step and sine wave input signals and a promising results have been analyzed.


Author(s):  
Rina Ristiana ◽  
Arief Syaichu Rohman ◽  
Estiko Rijanto ◽  
Agus Purwadi ◽  
Egi Hidayat ◽  
...  

This paper develops an optimal speed control using a linear quadratic integral (LQI) control standard with/without an observer in the system based on an integrated battery-electric vehicle (IBEV) model. The IBEV model includes the dynamics of the electric motor, longitudinal vehicle, inverter, and battery. The IBEV model has one state variable of indirectly measured and unobservable, but the system is detectable. The objectives of this study were: (a) to create a speed control that gets the exact solution for a system with one indirect measurement and unobservable state variable; and (b) to create a speed control that has the potential to make a more efficient energy system. A full state feedback LQI controller without an observer is used as a benchmark. Two output feedback LQI controllers are designed; including one controller uses an order-4 observer and the other uses an order-5 observer. The order-4 observer does not include the battery state of charge as an observer state whereas the order-5 observer is designed by making all the state variable as the observer state and using the battery state of charge as an additional system output. An electric passenger minibus for public transport with 1500 kg weight was used as the vehicle model. Simulations were performed when the vehicle moves in a flat surface with the increased speed from stationary to 60 km/h and moves according to standard NEDC driving profile. The simulation results showed that both the output feedback LQI controllers provided similar speed performance as compared to the full state feedback LQI controller. However, the output feedback LQI controller with the order-5 observer consumed less energy than with the order-4 observer, which is about 10% for NEDC driving profile and 12% for a flat surface. It can be concluded that the LQI controller with order-5 observer gives better energy efficiency than the LQI controller with order-4 observer


2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Emmanouil Spyrakos-Papastavridis ◽  
Jian S. Dai

Abstract This paper attempts to address the quandary of flexible-joint humanoid balancing performance augmentation, via the introduction of the Full-State Feedback Variable Impedance Control (FSFVIC), and Model-Free Compliant Floating-base VIC (MCFVIC) schemes. In comparison to rigid-joint humanoid robots, efficient balancing control of compliant bipeds, powered by Series Elastic Actuators (or harmonic drives), requires the design of more sophisticated controllers encapsulating both the motor and underactuated link dynamics. It has been demonstrated that Variable Impedance Control (VIC) can improve robotic interaction performance, albeit by introducing energy-injecting elements that may jeopardize closed-loop stability. To this end, the novel FSFVIC and MCFVIC schemes are proposed, which amalgamate both collocated and non-collocated feedback gains, with power-shaping signals that are capable of preserving the system's stability/passivity during VIC. The FSFVIC and MCFVIC stably modulate the system's collocated state gains to augment balancing performance, in addition to the non-collocated state gains that dictate the position control accuracy. Utilization of arbitrarily low-impedance gains is permitted by both the FSFVIC and MCFVIC schemes propounded herein. An array of experiments involving the COmpliant huMANoid reveals that significant balancing performance amelioration is achievable through online modulation of the full-state feedback gains (VIC), as compared to utilization of invariant impedance control.


2015 ◽  
Vol 1115 ◽  
pp. 440-445 ◽  
Author(s):  
Musa Mohammed Bello ◽  
Amir Akramin Shafie ◽  
Raisuddin Khan

The main purpose of vehicle suspension system is to isolate the vehicle main body from any road geometrical irregularity in order to improve the passengers ride comfort and to maintain good handling stability. The present work aim at designing a control system for an active suspension system to be applied in today’s automotive industries. The design implementation involves construction of a state space model for quarter car with two degree of freedom and a development of full state-feedback controller. The performance of the active suspension system was assessed by comparing it response with that of the passive suspension system. Simulation using Matlab/Simulink environment shows that, even at resonant frequency the active suspension system produces a good dynamic response and a better ride comfort when compared to the passive suspension system.


Author(s):  
Marcio S. de Queiroz ◽  
Darren M. Dawson ◽  
Siddharth P. Nagarkatti ◽  
Fumin Zhang

Sign in / Sign up

Export Citation Format

Share Document