ride comfort
Recently Published Documents


TOTAL DOCUMENTS

1577
(FIVE YEARS 496)

H-INDEX

27
(FIVE YEARS 7)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Jiguang Hou ◽  
Xianteng Cao ◽  
Changshu Zhan

Suspension is an important part of intelligent and safe transportation; it is the balance point between the comfort and handling stability of a vehicle under intelligent traffic conditions. In this study, a control method of left-right symmetry of air suspension based on H∞ theory was proposed, which was verified under intelligent traffic conditions. First, the control stability caused by the active suspension control system running on uneven roads needs to be ensured. To address this issue, a 1/4 vehicle active suspension model was established, and the vertical acceleration of the vehicle body was applied as the main index of ride comfort. H∞ performance constraint output indicators of the controller contained the tire dynamic load, suspension dynamic stroke, and actuator control force limit. Based on the Lyapunov stability theory, an output feedback control law with H∞-guaranteed performance was proposed to constrain multiple targets. This way, the control problem was transformed into a solution to the Riccati equation. The simulation results showed that when dealing with general road disturbances, the proposed control strategy can reduce the vehicle body acceleration by about 20% and meet the requirements of an ultimate suspension dynamic deflection of 0.08 m and a dynamic tire load of 1500 N. Using this symmetrical control method can significantly improve the ride comfort and driving stability of a vehicle under intelligent traffic conditions.


2022 ◽  
Vol 19 (4) ◽  
pp. 13-20
Author(s):  
L. A. Sladkova ◽  
A. N. Neklyudov

Modern railway rolling stock should meet requirements regarding comfort (maximum travel speed with minimum vibrations of wagons, noiselessness of movement, etc.).To eliminate the influence of dynamic loads, rolling stock is equipped with vibration dampers. The objective of the work is to select the parameters of the vibration dampers of rolling stock, depending on its characteristics, to ensure the due indicators of comfort and safety of transportation of passengers and goods by rail. To achieve this objective, applied methods of mathematical modelling were based on numerical programming of operation of dynamic systems. The indicators of vibration dampers are evaluated according to the results of studies of the dynamics of the rolling stock (in particular, of vibration protection rates).Assessment of dynamic state of the rolling stock implies application of methods of mathematical and physical modelling, which include the development of a physical and mathematical model, a calculation algorithm, and computer programming. The study of the mathematical model by numerical methods makes it possible to carry out a multifactorial experiment using a large number of input parameters (factors) and to select the characteristics of vibration dampers that are optimal for the conditions under consideration.To solve dynamic problems, the harmonic perturbation model, which is the most widespread, was specified in the form of a sinusoid with a period corresponding to the rail length.A quantitative assessment of the vibration process (frequency, amplitude) makes it possible to identify the main processes occurring in the system under consideration under various types of external load. The introduced assumptions related to rigidity, mobility and geometric immutability of the system allow determining the methods for obtaining a mathematical model and considering the vibrations as flat ones.The equations were solved in MathCad Prime 4.0 package using the Runge–Kutta method with automatic step selection. The subsequent study of the properties of the dynamic system was carried out by changing the resistance parameter of dampers of the first stage of spring suspension, while recording the values of the amplitude of the vibrations of the system and the period.The analysis of the results has shown that the vibration period of the body and bogies under any changes in the resistance parameter of the damper remains unchanged, while rational parameters of resistance of axle box dampers have been revealed for specified indicators. Hydraulic vibration dampers with the revealed parameters used on rolling stock help to reduce wear and damageability of running gears, improve ride comfort and traffic safety, as well as to reduce repair and maintenance costs. 


2022 ◽  
Author(s):  
Daofei Li ◽  
Linhui Chen

<p>Motion sickness is very common in road transport. To guarantee ride comfort and user experience, there is an urgent need for effective solutions to motion sickness mitigation in semi- and fully-automated vehicles. Considering both effectiveness and user-friendliness, a vibration cue system is proposed to inform passengers of the upcoming vehicle movement through tactile stimulation. By integrating the motion planning results from automated driving algorithms, the vibration cueing timing and patterns are optimized with the theory of motion anticipation. Using a cushion-based prototype of vibration cue system, 20 participants were invited to evaluate this solution in two conditions of driving simulator experiments. Results show that with the proposed vibration cue system, it could also help participants to comprehend the cues and to generate motion anticipation. The participants’ motion sickness degrees were significantly lowered. This research may serve as one foundation for the detailed system development in practical applications.</p><p>(This article has been accepted for publication in <i>Ergonomics</i>, published by Taylor & Francis.)</p><br>


2022 ◽  
Vol 8 (2) ◽  
pp. 295-301
Author(s):  
Indra Hasan ◽  
Denur

Noise on a motorcycle is unwanted sound because it does not fit the context of space and time thus affecting ride comfort . Noise caused by the vibrating object or objects collide . Which became the main object causes of noise in the Cylinder Head Honda cb 150 R is due to the large gap camshaft causing collision between the camshaft with holder. This research was conducted entirely in the workshop by examining the influence of several variations of the gap camshaft to noise generated in the cylinder head . Variations slit used was 0,75 mm , 0,85 mm , 0,95 mm , 1,05 mm, and 1,15 mm . The results showed that the variation of the gap camshaft significant effect on the noise generated , namely : a gap of 0,75 mm camshaft generate noise by 78,12 dB , 0,85 mm gap camshaft generate noise with a value of 78,37 dB , 0,95 mm gap camshaft generate noise 78,93 dB , 1,05 mm gap camshaft generate noise levels at 79,95 dB, and 1,15 mm gap camshafts produce 80,23 dB. Based on the results of the research with camshaft gap variation can be concluded that the lowest noise level generated by the camshaft gap of 0,75 mm .


2022 ◽  
Vol 2160 (1) ◽  
pp. 012035
Author(s):  
Chun Lin ◽  
Shong Loong Chen ◽  
Chaowei Tang ◽  
Hsin Ang Hsieh

Abstract The quality of roads is an indicator of urban progress. The development of tourism and economy contributes to the increasing demands for transportation and, thus, aggravated burdens and vulnerability to damage of these roads, and the result is compromised transportation quality and safety. The Road Leveling Project is aimed to road updates and improvement of pavement quality. New Taipei City was selected as the subject for this study. International roughness index (IRI) was selected for field survey and statistical comparison. The outcome indicated that the IRI spread between 3.5 and 6.5 m/km before road leveling with an average of 4.71 m/km; the index fell between 2.5 and 4.5 m/km after road leveling with an average of 3.12m/km, suggesting that the IRI of the tested road sections showed a declining trend. For multi-lane road sections tested, the improvement was greater on the outer lanes than on the inner lanes. This proves that the implementation of the Road Leveling Project has made significant improvement in terms of pavement flatness. Suggestions are proposed in this study for the subsequent management and improvement polices of the Road Leveling Project, hoping that the pavement quality improvement continues to contribute to the extension of road service life and ride comfort.


Author(s):  
Manas Metar

Abstract: A suspension system is a crucial part of the vehicle system which assists in handling the vehicle and safety of the occupants. From leaf spring type suspension to multi-link suspension and modern adaptive suspension systems, different modifications and researches are practiced to enhance dynamic characteristics of suspension optimizing drivability and ride comfort. The presented study focuses on the analysis of double wishbone suspension system. The components used and working of this suspension are also explained as well as the numerical calculation for creation of the spring is presented. The Finite Element Analysis (FEA) is carried out using Simscale software. The suspension is analyzed through static analysis and results show acceptable values. Keywords: Structural Analysis, Vehicle Suspension System, Double Wishbone Suspension System, Analysis of Suspension System, Finite Element Analysis (FEA), SIMSCALE, Suspension Spring, Suspension Spring Calculation.


Author(s):  
Vitaly Atapin ◽  
Alexey Bondarenko ◽  
Mykola Sysyn ◽  
Dimitri Grün

AbstractContinuous welded rail (CWR) track has great advantages of low-cost maintenance, environmental influence, and ride comfort. However, the CWR track is subjected to the longitudinal stresses in rails due to temperature influence as well the inhomogeneous stress accumulation due to train loadings. The stresses cause the accelerated track lateral irregularity accumulation that without timely maintenance can cause track buckling. The present paper present a method of the CWR track lateral stability estimation during its lifecycle using the track geometry monitoring information from the track measurement cars. The methods proposes a systematic approach of track stability evaluation based on multiple criteria of track stability evaluation. It takes into account the lateral resistance of the track, actual temperatures, and the lateral geometry condition of the track. The presented case study of a half-year track geometry monitoring and the track stability evaluation in a track curve shows the practical possibility of the recent detection of the track sections with low lateral stability and buckling prevention.


Author(s):  
Jingyue Wang ◽  
Kun Lv ◽  
Haotian Wang ◽  
Sheng Guo ◽  
Junnian wang

To improve the ride comfort of wheeled armored vehicles, air springs are used. To describe the vehicle motion more accurately, a nine-degree-of-freedom air suspension system for the whole vehicle was established, and its equations of motion were derived. Through theoretical analysis of the stiffness characteristics and forces on the air springs, the nonlinear restoring force was obtained as a cubic polynomial of the air spring displacement. The simulation results obtained by fitting the polynomial and radial basis function curves with MATLAB/Simulink software are consistent with the actual test results, thus verifying the correctness of the nonlinear air spring polynomial model. Finally, a fuzzy fractional order PIλDμ controller is designed and simulated for the vehicle-seat-body model in terms of wheel dynamic load, suspension dynamic deflection, body acceleration, and other indicators. The simulation results show that the fuzzy fractional order PIλDμ Proportion Integral Differential (PID) control strategy has better overall performance than the PID control strategy, fuzzy control strategy, and fuzzy PID control strategy.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2442
Author(s):  
Ayman Aljarbouh ◽  
Muhammad Fayaz ◽  
Muhammad Shuaib Qureshi ◽  
Younes Boujoudar

With the advance in technology in driving vehicles, there is currently more emphasis on developing advanced control systems for better road handling stability and ride comfort. However, one of the challenging problems in the design and implementation of intelligent suspension systems is that there is currently no solution supporting the export of generic suspension models and control components for integration into embedded Electronic Control Units (ECUs). This significantly limits the usage of embedded suspension components in automotive production code software as it requires very high efforts in implementation, manual testing, and fulfilling coding requirements. This paper introduces a new dynamic model of full-car suspension system with semi-active suspension behavior and provides a hybrid sliding mode approach for control of full-car suspension dynamics such that the road handling stability and ride comfort characteristics are ensured. The semi-active suspension model and the hybrid sliding mode controller are implemented as Functional Mock-Up Units (FMUs) conforming to the Functional Mock-Up Interface for embedded systems (eFMI) and are calibrated with a set experimental tests using a 1/5 Soben-car test bench. The methods and prototype implementation proposed in this paper allow both model and controller re-usability and provide a generic way of integrating models and control software into embedded ECUs.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jin Gao ◽  
Xiaoping Qi

In this study, the parameters of the MacPherson front suspension and the E-type multilink rear suspension are matched to enhance the vehicle ride comfort on bump road. Vehicle vibration and suspension stiffness are analyzed theoretically. In the simulation study, the influence of the front and rear wheels on the vehicle vibration is considered, so the time-domain curves of the front and rear seat rail accelerations are processed by adding windows with two different window functions. The resulting ΔRmsLocal and ΔRmsGlobal are used as evaluation indexes of the vehicle ride comfort. The sensitivity analysis yields the magnitude of the influence of the suspension parameters on the evaluation indexes. In addition, the trends of ΔRmsLocal and ΔRmsGlobal with bushing stiffness at different vehicle speeds are discussed. The results show that longitudinal ΔRmsLocal and ΔRmsGlobal of the seat rails are influenced by the bushings mostly, while the vertical ΔRmsLocal and ΔRmsGlobal of the seat rails are influenced by the spring and shock absorber mostly. The trends of ΔRmsLocal and ΔRmsGlobal with bushing stiffness are influenced by the speed of the vehicle. Finally, the vehicle ride comfort is enhanced after optimization and matching of the suspension parameters by NSGA-II optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document