scholarly journals Low-Profile Dual-Band Stacked Microstrip Monopolar Patch Antenna for WLAN and Car-to-Car Communications

IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 69575-69581 ◽  
Author(s):  
Shuai Gao ◽  
Lei Ge ◽  
Dengguo Zhang ◽  
Wei Qin
Keyword(s):  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hongmei Liu ◽  
Chenhui Xun ◽  
Shaojun Fang ◽  
Zhongbao Wang

A low-profile dual-band circular polarized (CP) patch antenna with wide half-power beamwidths (HPBWs) is presented for CNSS applications. Simple stacked circular patches are used to achieve dual-band radiation. To enhance the HPBW for the two operation bands, a dual annular parasitic metal strip (D-APMS) combined with reduced ground plane (R-GP) is presented. A single-input feed network based on the coupled line transdirectional (CL-TRD) coupler is also proposed to provide two orthogonal modes at the two frequency bands simultaneously. Experimental results show that the 10 dB impedance bandwidth is 32.7%. The 3 dB axial ratio (AR) bandwidths for the lower and upper bands are 4.1% and 6.5%, respectively. At 1.207 GHz, the antenna has the HPBW of 123° and 103° in the xoz and yoz planes, separately. And the values are 127° and 113° at 1.561 GHz.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
M. Habib Ullah ◽  
M. T. Islam ◽  
M. R. Ahsan ◽  
J. S. Mandeep ◽  
N. Misran

A low profile, compact dual band slotted patch antenna has been designed using finite element method-based high frequency full-wave electromagnetic simulator. The proposed antenna fabricated using LPKF printed circuit board (PCB) fabrication machine on fiberglass reinforced epoxy polymer resin material substrate and the performance of the prototype has been measured in a standard far-field anechoic measurement chamber. The measured impedance bandwidths of (reflection coefficient<-10 dB) 12.26% (14.3–16.2 GHZ), 8.24% (17.4–18.9 GHz), and 3.08% (19.2–19.8) have been achieved through the proposed antenna prototype. 5.9 dBi, 3.37 dBi, and 3.32 dBi peak gains have been measured and simulated radiation efficiencies of 80.3%, 81.9%, and 82.5% have been achieved at three resonant frequencies of 15.15 GHz, 18.2 GHz, and 19.5 GHz, respectively. Minimum gain variation, symmetric, and almost steady measured radiation pattern shows that the proposed antenna is suitable for Ku and K band satellite applications.


2019 ◽  
Vol 13 (13) ◽  
pp. 2360-2364 ◽  
Author(s):  
Qi Zheng ◽  
Chenjiang Guo ◽  
Jun Ding ◽  
Guy A.E. Vandenbosch
Keyword(s):  

2007 ◽  
Vol 49 (11) ◽  
pp. 2630-2634 ◽  
Author(s):  
X. L. Bao ◽  
G. Ruvio ◽  
M. J. Ammann

Sign in / Sign up

Export Citation Format

Share Document