scholarly journals Improved modeling of lithium-ion battery capacity degradation using an individual-state training method and recurrent softplus neural network

IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Jianxiang Wang ◽  
Xuesong Feng ◽  
Xiaokun Zhang ◽  
Yong Xiang
2021 ◽  
Vol 12 (4) ◽  
pp. 228
Author(s):  
Jianfeng Jiang ◽  
Shaishai Zhao ◽  
Chaolong Zhang

The state-of-health (SOH) estimation is of extreme importance for the performance maximization and upgrading of lithium-ion battery. This paper is concerned with neural-network-enabled battery SOH indication and estimation. The insight that motivates this work is that the chi-square of battery voltages of each constant current-constant voltage phrase and mean temperature could reflect the battery capacity loss effectively. An ensemble algorithm composed of extreme learning machine (ELM) and long short-term memory (LSTM) neural network is utilized to capture the underlying correspondence between the SOH, mean temperature and chi-square of battery voltages. NASA battery data and battery pack data are used to demonstrate the estimation procedures and performance of the proposed approach. The results show that the proposed approach can estimate the battery SOH accurately. Meanwhile, comparative experiments are designed to compare the proposed approach with the separate used method, and the proposed approach shows better estimation performance in the comparisons.


2021 ◽  
Vol 13 (23) ◽  
pp. 13333
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla Shahadat Hossain Lipu ◽  
Aini Hussain ◽  
Mohamad Hanif Md Saad

Remaining Useful Life (RUL) prediction for lithium-ion batteries has received increasing attention as it evaluates the reliability of batteries to determine the advent of failure and mitigate battery risks. The accurate prediction of RUL can ensure safe operation and prevent risk failure and unwanted catastrophic occurrence of the battery storage system. However, precise prediction for RUL is challenging due to the battery capacity degradation and performance variation under temperature and aging impacts. Therefore, this paper proposes the Multi-Channel Input (MCI) profile with the Recurrent Neural Network (RNN) algorithm to predict RUL for lithium-ion batteries under the various combinations of datasets. Two methodologies, namely the Single-Channel Input (SCI) profile and the MCI profile, are implemented, and their results are analyzed. The verification of the proposed model is carried out by combining various datasets provided by NASA. The experimental results suggest that the MCI profile-based method demonstrates better prediction results than the SCI profile-based method with a significant reduction in prediction error with regard to various evaluation metrics. Additionally, the comparative analysis has illustrated that the proposed RNN method significantly outperforms the Feed Forward Neural Network (FFNN), Back Propagation Neural Network (BPNN), Function Fitting Neural Network (FNN), and Cascade Forward Neural Network (CFNN) under different battery datasets.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yujie Cheng ◽  
Laifa Tao ◽  
Chao Yang

This study introduces visual cognition into Lithium-ion battery capacity estimation. The proposed method consists of four steps. First, the acquired charging current or discharge voltage data in each cycle are arranged to form a two-dimensional image. Second, the generated image is decomposed into multiple spatial-frequency channels with a set of orientation subbands by using non-subsampled contourlet transform (NSCT). NSCT imitates the multichannel characteristic of the human visual system (HVS) that provides multiresolution, localization, directionality, and shift invariance. Third, several time-domain indicators of the NSCT coefficients are extracted to form an initial high-dimensional feature vector. Similarly, inspired by the HVS manifold sensing characteristic, the Laplacian eigenmap manifold learning method, which is considered to reveal the evolutionary law of battery performance degradation within a low-dimensional intrinsic manifold, is used to further obtain a low-dimensional feature vector. Finally, battery capacity degradation is estimated using the geodesic distance on the manifold between the initial and the most recent features. Verification experiments were conducted using data obtained under different operating and aging conditions. Results suggest that the proposed visual cognition approach provides a highly accurate means of estimating battery capacity and thus offers a promising method derived from the emerging field of cognitive computing.


2018 ◽  
Vol 32 (34n36) ◽  
pp. 1840062 ◽  
Author(s):  
Mingfang Liu ◽  
Bei Li ◽  
Fafa Qian ◽  
Guanzhou Qian

The lithium ion battery is considered as the experimental object, and its discharge characteristics are studied. A model of the battery in different charge-states is established by a tool of neural network while battery’s rebound voltage, temperature and load are set as input parameters. The validity of the model is tested based on the experimental data. The accuracy, adaptability and stability of the SOC in this model is validated in a variety of the working conditions, and the accuracy of the model is demonstrated to be higher than 5%.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 122
Author(s):  
Peipei Xu ◽  
Junqiu Li ◽  
Chao Sun ◽  
Guodong Yang ◽  
Fengchun Sun

The accurate estimation of a lithium-ion battery’s state of charge (SOC) plays an important role in the operational safety and driving mileage improvement of electrical vehicles (EVs). The Adaptive Extended Kalman filter (AEKF) estimator is commonly used to estimate SOC; however, this method relies on the precise estimation of the battery’s model parameters and capacity. Furthermore, the actual capacity and battery parameters change in real time with the aging of the batteries. Therefore, to eliminate the influence of above-mentioned factors on SOC estimation, the main contributions of this paper are as follows: (1) the equivalent circuit model (ECM) is presented, and the parameter identification of ECM is performed by using the forgetting-factor recursive-least-squares (FFRLS) method; (2) the sensitivity of battery SOC estimation to capacity degradation is analyzed to prove the importance of considering capacity degradation in SOC estimation; and (3) the capacity degradation model is proposed to perform the battery capacity prediction online. Furthermore, an online adaptive SOC estimator based on capacity degradation is proposed to improve the robustness of the AEKF algorithm. Experimental results show that the maximum error of SOC estimation is less than 1.3%.


Sign in / Sign up

Export Citation Format

Share Document