Catalpa bungei C. A. Mey. (C. bungei) is one of the recommended native species for ecological management in China. It is a fast-growing tree of high economic and ecological importance, but its rare resources, caused by anthropogenic destruction and local climatic degradation, have not satisfied the requirements. It has been widely recommended for large-scale afforestation of ecological management and gradually increasing in recent years, but the impact mechanism of climate change on its growth has not been studied yet. Studying the response of species to climate change is an important part of national afforestation planning. Based on combinations of climate, topography, soil variables, and the multiple model ensemble (MME) of CMIP6, this study explored the relationship between C. bungei and climate change, then constructed Maxent to predict its potential distribution under SSP126 and SSP585 and analyzed its dominant environmental factors. The results showed that C. bungei is widely distributed in Henan, Hebei, Hubei, Anhui, Jiangsu, and Shaanxi provinces and others where it covers an area of 2.96 × 106 km2. Under SSP126 and SSP585, its overall habitat area will increase by more than 14.2% in 2080–2100, which mainly indicates the transformation of unsuitable areas into low suitable areas. The center of its distribution will migrate to the north with a longer distance under SSP585 than that under SSP126, and it will transfer from the junction of Shaanxi and Hubei province to the north of Shaanxi province under SSP585 by 2100. In that case, C. bungei shows a large-area degradation trend in the south of the Yangtze River Basin but better suitability in the north of the Yellow River Basin, such as the Northeast Plain, the Tianshan Mountains, the Loess Plateau, and others. Temperature factors have the greatest impact on the distribution of C. bungei. It is mainly affected by the mean temperature of the coldest quarter, followed by precipitation of the wettest month, mean diurnal range, and precipitation of the coldest quarter. Our results hence demonstrate that the increase of the mean temperature of the coldest quarter becomes the main reason for its degradation, which simultaneously means a larger habitat boundary in Northeast China. The findings provide scientific evidence for the ecological restoration and sustainable development of C. bungei in China.