Active Control Strategy for Wind Farm Systems to Prevent Sub/super-Synchronous Oscillations

Author(s):  
Haijiao Wang ◽  
Chun Liu
2006 ◽  
Vol 39 (2) ◽  
pp. 1075-1080 ◽  
Author(s):  
Laure Sinègre ◽  
Nicolas Petit ◽  
Thierry Saint-Pierre ◽  
Pierre Lemétayer

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3642 ◽  
Author(s):  
Ming Ye ◽  
Yitao Long ◽  
Yi Sui ◽  
Yonggang Liu ◽  
Qiao Li

With the development of intelligent vehicle technologies, vehicles can obtain more and more information from various sensors. Many researchers have focused on the vertical and horizontal relationships between vehicles in a vehicle cluster environment and control of the vehicle power system. When the vehicle is driving in the cluster environment, the powertrain system should quickly respond to the driver’s dynamic demand, so as to achieve the purpose of quickly passing through the cluster environment. The vehicle powertrain system should be regarded as a separate individual to research its active control strategy in a vehicle cluster environment to improve the control effect. In this study, the driving characteristics of vehicles in a cluster environment have been analyzed, and a vehicle power-demanded prediction algorithm based on a vehicle-following model has been proposed in a cluster environment. Based on the vehicle power demand forecast and driver operation, an active control strategy of the vehicle powertrain system has been designed considering the passive control strategy of the powertrain system. The results show that the vehicle powertrain system can ensure a sufficient backup power with the active control proposed in the paper, and the motor efficiency is improved by 0.61% compared with that of the passive control strategy. Moreover, the overall efficiency of the powertrain system is increased by 0.6% and the effectiveness of the active control is validated using the vehicle cluster environment.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 173719-173730 ◽  
Author(s):  
Jing Zhang ◽  
Hantao Zhang ◽  
Baolin Song ◽  
Songlin Xie ◽  
Zhigang Liu

Author(s):  
Liming Dai ◽  
Lin Sun

An active control strategy is developed for nonlinear vibration control of an axially translating beam applied in engineering field. The control strategy is established on the basis of Fuzzy Sliding Mode Control. The nonlinear model governing the beam system is described with a six-degree nonlinear dynamic system. Corresponding to the multi-degree nonlinear system, the active control strategy is developed. The proposed control strategy is proven to be effective in controlling and stabilizing the nonlinear motions especially chaotic motion of the beam.


Sign in / Sign up

Export Citation Format

Share Document