Optimal force control of a vibro-impact system for autonomous drilling applications

Author(s):  
J. B. Aldrich ◽  
A. B. Okon
2012 ◽  
Author(s):  
Andrew J. McDaid ◽  
Kean C. Aw ◽  
Sheng Q. Xie ◽  
Enrico Haemmerle

2013 ◽  
Vol 18 (3) ◽  
pp. 1130-1139 ◽  
Author(s):  
Mokrane Boudaoud ◽  
Yassine Haddab ◽  
Yann Le Gorrec
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jingyue Wang ◽  
Haotian Wang ◽  
Tie Wang

A single-degree-of-freedom mechanical model of vibro-impact system is established. Bifurcation and chaos in the system are revealed with the time history diagram, phase trajectory map, and Poincaré map. According to the bifurcation and chaos of the actual vibro-impact system, the paper puts forward external periodic force control strategy. The method of controlling chaos by external periodic force feedback controller is developed to guide chaotic motions towards regular motions. The stability of the control system is also analyzed especially by theory. By selecting appropriate feedback coefficients, the unstable periodic orbits of the original chaotic orbit can be stabilized to the stable periodic orbits. The effectiveness of this control method is verified by numerical simulation.


2008 ◽  
Vol 35 (S 01) ◽  
Author(s):  
Y Li ◽  
J Randerath ◽  
G Goldenberg ◽  
J Hermsdörfer

2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
F Kirsten ◽  
S Bohlen ◽  
J Sommer ◽  
T Merl ◽  
P Saemann ◽  
...  

Author(s):  
K. Shibazaki ◽  
H. Nozaki

In this study, in order to improve steering stability during turning, we devised an inner and outer wheel driving force control system that is based on the steering angle and steering angular velocity, and verified its effectiveness via running tests. In the driving force control system based on steering angle, the inner wheel driving force is weakened in proportion to the steering angle during a turn, and the difference in driving force is applied to the inner and outer wheels by strengthening the outer wheel driving force. In the driving force control (based on steering angular velocity), the value obtained by multiplying the driving force constant and the steering angular velocity,  that differentiates the driver steering input during turning output as the driving force of the inner and outer wheels. By controlling the driving force of the inner and outer wheels, it reduces the maximum steering angle by 40 deg and it became possible to improve the cornering marginal performance and improve the steering stability at the J-turn. In the pylon slalom it reduces the maximum steering angle by 45 deg and it became possible to improve the responsiveness of the vehicle. Control by steering angle is effective during steady turning, while control by steering angular velocity is effective during sharp turning. The inner and outer wheel driving force control are expected to further improve steering stability.


Sign in / Sign up

Export Citation Format

Share Document