A Novel Residual Stress Detection Method for Complex Large Welded Structures Based on Excitation Vibration Response

Author(s):  
Xiaohan Liu ◽  
Guangfeng Shi ◽  
Weina Liu
2012 ◽  
Vol 548 ◽  
pp. 367-371
Author(s):  
Hai Wang ◽  
Yun Hua Tong

The residual stress introduced in the thin-film process may caused some problems, especially after removing of the sacrificial layers below, the suspended structure may be bended due to the release. In this articles we will develop a new in-situ residual stress detection method based on flexible hinges for thin-film materials, then described the detection principle theoretically and simulated its properties by FEA method.


Author(s):  
N U Dar ◽  
E M Qureshi ◽  
A M Malik ◽  
M M I Hammouda ◽  
R A Azeem

In recent years, the demand for resilient welded structures with excellent in-service load-bearing capacity has been growing rapidly. The operating conditions (thermal and/or structural loads) are becoming more stringent, putting immense pressure on welding engineers to secure excellent quality welded structures. The local, non-uniform heating and subsequent cooling during the welding processes cause complex thermal stress—strain fields to develop, which finally leads to residual stresses, distortions, and their adverse consequences. Residual stresses are of prime concern to industries producing weld-integrated structures around the globe because of their obvious potential to cause dimensional instability in welded structures, and contribute to premature fracture/failure along with significant reduction in fatigue strength and in-service performance of welded structures. Arc welding with single or multiple weld runs is an appropriate and cost-effective joining method to produce high-strength structures in these industries. Multi-field interaction in arc welding makes it a complex manufacturing process. A number of geometric and process parameters contribute significant stress levels in arc-welded structures. In the present analysis, parametric studies have been conducted for the effects of a critical geometric parameter (i.e. tack weld) on the corresponding residual stress fields in circumferentially welded thin-walled cylinders. Tack weld offers considerable resistance to the shrinkage, and the orientation and size of tacks can altogether alter stress patterns within the weldments. Hence, a critical analysis for the effects of tack weld orientation is desirable.


2013 ◽  
Vol 23 (4) ◽  
pp. 045009 ◽  
Author(s):  
Ryan C Tung ◽  
Anurag Garg ◽  
Andrew Kovacs ◽  
Dimitrios Peroulis ◽  
Arvind Raman

2016 ◽  
Vol 46 ◽  
pp. 30-55 ◽  
Author(s):  
Guangming Fu ◽  
Marcelo Igor Lourenço ◽  
Menglan Duan ◽  
Segen F. Estefen

Author(s):  
Isabel Hadley ◽  
Simon Smith

Failure of welded structures due to the presence of flaws is typically driven by a mixture of applied and residual stresses, yet in most cases only the former are known accurately. In as-welded structures, a typical assumption is that the magnitude of welding residual stress is bounded by the room temperature yield strength of the parent material. The UK flaw assessment procedure BS 7910:2013 also assumes that mechanical loading (either as a result of proof testing or during the initial loading of an as-welded structure) will bring about a relaxation in residual stress. Conversely, the UK structural assessment code for nuclear structures, R6, contains a warning on the ‘limited validation’ of the BS 7910 approaches for stress relaxation and suggests that they should be used ‘with caution’. The aim of this study was therefore to review the basis of the BS 7910 clauses on stress relaxation with a view to harmonising the BS 7910 and R6 rules for cases in which the original welding residual stress distribution is not known. The residual stress relaxation clauses of BS 7910:2013 date back to the 1991 edition of PD 6493 and have not changed substantially since then. A considerable programme of work was carried out by TWI at the time to justify and validate the clause, but the full underlying details of the work have not hitherto been available in the public domain, and are described in a separate companion paper. The approach proposed in BS 7910 combines ‘global’ relaxation of residual stress (Qm) under high mechanical load with ‘local’ enhancement of crack tip driving force through the adoption of a simplified primary/secondary stress interaction factor, ρ.


2014 ◽  
Vol 941-944 ◽  
pp. 2062-2065
Author(s):  
Shu Qi Li ◽  
Hong Yuan Fang ◽  
Xue Song Liu ◽  
Wei Cui

Welded components of low alloy steels are widely used in various applications. Stress reliving is very important to these welded structures. Vibration stress relief (VSR) is an relatively new method for this purpose. In this study, Q235 and Q345 steel plates were welded. Then they were treated by VSR. The microstructure of the welded lines were investigated and the residual stresses in two directions in these welded structures were measured. The difference of the efficiency of VSR on the two materials were investigate. It is found that, the decreasing amplitude of the residual stress in the Q235 welded structures significantly exceeded that in the Q345 welded structures. The grain size in the area near the weld lines is the main factor that affects the efficiency of the VSR treatment.


Sign in / Sign up

Export Citation Format

Share Document