Selection of multi-temporal scenes for the Mississippi Cropland data layer, 2004

Author(s):  
F.L. Shore ◽  
T.L. Gregory ◽  
R. Mueller
Author(s):  
M. Sapena ◽  
L. A. Ruiz

The monitoring and modelling of the evolution of urban areas is increasingly attracting the attention of land managers and administration. New data, tools and methods are being developed and made available for a better understanding of these dynamic areas. We study and analyse the concept of landscape fragmentation by means of GIS and remote sensing techniques, particularly focused on urban areas. Using LULC data obtained from the European Urban Atlas dataset developed by the local component of Copernicus Land Monitoring Services (scale 1:10,000), the urban fragmentation of the province of Rome is studied at 2006 and 2012. A selection of indices that are able to measure the land cover fragmentation level in the landscape are obtained employing a tool called <i>IndiFrag</i>, using as input data LULC data in vector format. In order to monitor the urban morphological changes and growth patterns, a new module with additional multi-temporal metrics has been developed for this purpose. These urban fragmentation and multi-temporal indices have been applied to the municipalities and districts of Rome, analysed and interpreted to characterise quantity, spatial distribution and structure of the urban change. This methodology is applicable to different regions, affording a dynamic quantification of urban spatial patterns and urban sprawl. The results show that urban form monitoring with multi-temporal data using these techniques highlights urbanization trends, having a great potential to quantify and model geographic development of metropolitan areas and to analyse its relationship with socioeconomic factors through the time.


2021 ◽  
Vol 13 (5) ◽  
pp. 968 ◽  
Author(s):  
Tyler J. Lark ◽  
Ian H. Schelly ◽  
Holly K. Gibbs

The U.S. Department of Agriculture’s (USDA) Cropland Data Layer (CDL) is a 30 m resolution crop-specific land cover map produced annually to assess crops and cropland area across the conterminous United States. Despite its prominent use and value for monitoring agricultural land use/land cover (LULC), there remains substantial uncertainty surrounding the CDLs’ performance, particularly in applications measuring LULC at national scales, within aggregated classes, or changes across years. To fill this gap, we used state- and land cover class-specific accuracy statistics from the USDA from 2008 to 2016 to comprehensively characterize the performance of the CDL across space and time. We estimated nationwide area-weighted accuracies for the CDL for specific crops as well as for the aggregated classes of cropland and non-cropland. We also derived and reported new metrics of superclass accuracy and within-domain error rates, which help to quantify and differentiate the efficacy of mapping aggregated land use classes (e.g., cropland) among constituent subclasses (i.e., specific crops). We show that aggregate classes embody drastically higher accuracies, such that the CDL correctly identifies cropland from the user’s perspective 97% of the time or greater for all years since nationwide coverage began in 2008. We also quantified the mapping biases of specific crops throughout time and used these data to generate independent bias-adjusted crop area estimates, which may complement other USDA survey- and census-based crop statistics. Our overall findings demonstrate that the CDLs provide highly accurate annual measures of crops and cropland areas, and when used appropriately, are an indispensable tool for monitoring changes to agricultural landscapes.


Author(s):  
C. Zhang ◽  
Z. Yang ◽  
L. Di ◽  
L. Lin ◽  
P. Hao

Abstract. As the most widely used crop-specific land use data, the Cropland Data Layer (CDL) product covers the entire Contiguous United States (CONUS) at 30-meter spatial resolution with very high accuracy up to 95% for major crop types (i.e., Corn, Soybean) in major crop area. However, the quality of early-year CDL products were not as good as the recent ones. There are many erroneous pixels in the early-year CDL product due to the cloud cover of the original Landsat images, which affect many follow-on researches and applications. To address this issue, we explore the feasibility of using machine learning technology to refine and correct misclassified pixels in the historical CDLs in this study. An end-to-end deep learning-based framework for restoration of misclassified pixels in CDL image is developed and tested. By feeding the CDL time series into the artificial neural network, a crop sequence model is trained and the misclassified pixels in an original CDL map can be restored. In the experiment with the 2005 CDL data of the State of Illinois, the misclassified pixels over Agricultural Statistics Districts (ASD) #1760 were corrected with a reasonable accuracy (> 85%). The findings suggest that the proposed method provides a low-cost and reliable way to refine the historical CDL data, which can be potentially scaled up to the entire CONUS.


Author(s):  
Chen Zhang ◽  
Zhengwei Yang ◽  
Liping Di ◽  
Li Lin ◽  
Pengyu Hao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document