A Low-Cost Embedded Facial Recognition System for Door Access Control using Deep Learning

Author(s):  
Gustavo Orna ◽  
Diego S. Benitez ◽  
Noel Perez
2019 ◽  
Vol 27 ◽  
pp. 04002
Author(s):  
Diego Herrera ◽  
Hiroki Imamura

In the new technological era, facial recognition has become a central issue for a great number of engineers. Currently, there are a great number of techniques for facial recognition, but in this research, we focus on the use of deep learning. The problems with current facial recognition convection systems are that they are developed in non-mobile devices. This research intends to develop a Facial Recognition System implemented in an unmanned aerial vehicle of the quadcopter type. While it is true, there are quadcopters capable of detecting faces and/or shapes and following them, but most are for fun and entertainment. This research focuses on the facial recognition of people with criminal records, for which a neural network is trained. The Caffe framework is used for the training of a convolutional neural network. The system is developed on the NVIDIA Jetson TX2 motherboard. The design and construction of the quadcopter are done from scratch because we need the UAV for adapt to our requirements. This research aims to reduce violence and crime in Latin America.


Our aim in this paper is to increase the accuracy of existing facial recognition system on a comparative smaller dataset as per the requirements of present day. Namely in sensitive regions. The methodology that has been adopted is by combining more than one algorithms. The feature detection capability of harr cascade along with Ada boost to fetch to Bilinear CNN so that on a comparative smaller dataset can produce comparative result as on bigger dataset.


Author(s):  
M. Yashwanth Sai ◽  
R Vijai Chandra Prasad ◽  
P. R. Niveditha ◽  
T. Sasipraba ◽  
S. Vigneshwari ◽  
...  

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 87
Author(s):  
Ziwei Song ◽  
Kristie Nguyen ◽  
Tien Nguyen ◽  
Catherine Cho ◽  
Jerry Gao

According to the World Health Organization (WHO), wearing a face mask is one of the most effective protections from airborne infectious diseases such as COVID-19. Since the spread of COVID-19, infected countries have been enforcing strict mask regulation for indoor businesses and public spaces. While wearing a mask is a requirement, the position and type of the mask should also be considered in order to increase the effectiveness of face masks, especially at specific public locations. However, this makes it difficult for conventional facial recognition technology to identify individuals for security checks. To solve this problem, the Spartan Face Detection and Facial Recognition System with stacking ensemble deep learning algorithms is proposed to cover four major issues: Mask Detection, Mask Type Classification, Mask Position Classification and Identity Recognition. CNN, AlexNet, VGG16, and Facial Recognition Pipeline with FaceNet are the Deep Learning algorithms used to classify the features in each scenario. This system is powered by five components including training platform, server, supporting frameworks, hardware, and user interface. Complete unit tests, use cases, and results analytics are used to evaluate and monitor the performance of the system. The system provides cost-efficient face detection and facial recognition with masks solutions for enterprises and schools that can be easily applied on edge-devices.


Author(s):  
Daniel A. Florez ◽  
Miguel A. Villa ◽  
Manuel G. Forero ◽  
Carlos A. Lugo

2021 ◽  
Vol 13 (12) ◽  
pp. 6900
Author(s):  
Jonathan S. Talahua ◽  
Jorge Buele ◽  
P. Calvopiña ◽  
José Varela-Aldás

In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv’s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13,359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained.


Sign in / Sign up

Export Citation Format

Share Document