scholarly journals Spartan Face Mask Detection and Facial Recognition System

Healthcare ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 87
Author(s):  
Ziwei Song ◽  
Kristie Nguyen ◽  
Tien Nguyen ◽  
Catherine Cho ◽  
Jerry Gao

According to the World Health Organization (WHO), wearing a face mask is one of the most effective protections from airborne infectious diseases such as COVID-19. Since the spread of COVID-19, infected countries have been enforcing strict mask regulation for indoor businesses and public spaces. While wearing a mask is a requirement, the position and type of the mask should also be considered in order to increase the effectiveness of face masks, especially at specific public locations. However, this makes it difficult for conventional facial recognition technology to identify individuals for security checks. To solve this problem, the Spartan Face Detection and Facial Recognition System with stacking ensemble deep learning algorithms is proposed to cover four major issues: Mask Detection, Mask Type Classification, Mask Position Classification and Identity Recognition. CNN, AlexNet, VGG16, and Facial Recognition Pipeline with FaceNet are the Deep Learning algorithms used to classify the features in each scenario. This system is powered by five components including training platform, server, supporting frameworks, hardware, and user interface. Complete unit tests, use cases, and results analytics are used to evaluate and monitor the performance of the system. The system provides cost-efficient face detection and facial recognition with masks solutions for enterprises and schools that can be easily applied on edge-devices.

2021 ◽  
Vol 13 (12) ◽  
pp. 6900
Author(s):  
Jonathan S. Talahua ◽  
Jorge Buele ◽  
P. Calvopiña ◽  
José Varela-Aldás

In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv’s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13,359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained.


2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


2019 ◽  
Vol 27 ◽  
pp. 04002
Author(s):  
Diego Herrera ◽  
Hiroki Imamura

In the new technological era, facial recognition has become a central issue for a great number of engineers. Currently, there are a great number of techniques for facial recognition, but in this research, we focus on the use of deep learning. The problems with current facial recognition convection systems are that they are developed in non-mobile devices. This research intends to develop a Facial Recognition System implemented in an unmanned aerial vehicle of the quadcopter type. While it is true, there are quadcopters capable of detecting faces and/or shapes and following them, but most are for fun and entertainment. This research focuses on the facial recognition of people with criminal records, for which a neural network is trained. The Caffe framework is used for the training of a convolutional neural network. The system is developed on the NVIDIA Jetson TX2 motherboard. The design and construction of the quadcopter are done from scratch because we need the UAV for adapt to our requirements. This research aims to reduce violence and crime in Latin America.


2021 ◽  
Author(s):  
◽  
V. H. Benitez-Baltazar

A new and deadly virus known as SARS-CoV-2, which is responsible for the coronavirus disease (COVID-19), is spreading rapidly around the world causing more than 3 million deaths. Hence, there is an urgent need to find new and innovative ways to reduce the likelihood of infection. One of the most common ways of catching the virus is by being in contact with droplets delivered by a sick person. The risk can be reduced by wearing a face mask as suggested by the World Health Organization (WHO), especially in closed environments such as classrooms, hospitals, and supermarkets. However, people hesitate to use a face mask leading to an increase in the risk of spreading the disease, moreover when the face mask is used, sometimes it is worn in the wrong way. In this work, an autonomic face mask detection system with deep learning and powered by the image tracking technique used for the augmented reality development is proposed as a mechanism to request the correct use of face masks to grant access to people to critical areas. To achieve this, a machine learning model based on Convolutional Neural Networks was built on top of an IoT framework to enforce the correct use of the face mask in required areas as it is requested by law in some regions.


Author(s):  
Dr. Prakash Prasad ◽  
Mukul Shende ◽  
Mayur Karemore ◽  
Lucky Khobragade ◽  
Amit Dravyakar ◽  
...  

The new pandemic of (Coronavirus Disease-2019) COVID-19 continues to spread worldwide. Every potential sector is experiencing a decline in growth. (World Health Organization) WHO suggests that Wearing Face Mask can reduce the impact of COVID-19. So, This Paper Proposed a system that controls the growth of COVID-19 by finding individuals who don't wear masks in populated areas like malls, markets where all public places are under surveillance with closed-circuit television cameras (CCTV). When a person without a mask is found, the corresponding authority is informed by the CCTV network. And it can calculate the number of people that do not wear the mask and emit an audible signal to inform the authority. A deep learning module is trained on a dataset composed of images of people wearing different types of masks and people without masks collected from various sources. It also contains some confusing images that help the model to achieve greater precision than other models. This model will use the dataset to build a COVID-19 face mask detector with computer vision using Computer Vision. This approach allowed extracting even the details from the pixels


Our aim in this paper is to increase the accuracy of existing facial recognition system on a comparative smaller dataset as per the requirements of present day. Namely in sensitive regions. The methodology that has been adopted is by combining more than one algorithms. The feature detection capability of harr cascade along with Ada boost to fetch to Bilinear CNN so that on a comparative smaller dataset can produce comparative result as on bigger dataset.


2021 ◽  
Vol 7 (9) ◽  
pp. 161
Author(s):  
Alejandra Sarahi Sanchez-Moreno ◽  
Jesus Olivares-Mercado ◽  
Aldo Hernandez-Suarez ◽  
Karina Toscano-Medina ◽  
Gabriel Sanchez-Perez ◽  
...  

Facial recognition is fundamental for a wide variety of security systems operating in real-time applications. Recently, several deep neural networks algorithms have been developed to achieve state-of-the-art performance on this task. The present work was conceived due to the need for an efficient and low-cost processing system, so a real-time facial recognition system was proposed using a combination of deep learning algorithms like FaceNet and some traditional classifiers like SVM, KNN, and RF using moderate hardware to operate in an unconstrained environment. Generally, a facial recognition system involves two main tasks: face detection and recognition. The proposed scheme uses the YOLO-Face method for the face detection task which is a high-speed real-time detector based on YOLOv3, while, for the recognition stage, a combination of FaceNet with a supervised learning algorithm, such as the support vector machine (SVM), is proposed for classification. Extensive experiments on unconstrained datasets demonstrate that YOLO-Face provides better performance when the face under an analysis presents partial occlusion and pose variations; besides that, it can detect small faces. The face detector was able to achieve an accuracy of over 89.6% using the Honda/UCSD dataset which runs at 26 FPS with darknet-53 to VGA-resolution images for classification tasks. The experimental results have demonstrated that the FaceNet+SVM model was able to achieve an accuracy of 99.7% using the LFW dataset. On the same dataset, FaceNet+KNN and FaceNet+RF achieve 99.5% and 85.1%, respectively; on the other hand, the FaceNet was able to achieve 99.6%. Finally, the proposed system provides a recognition accuracy of 99.1% and 49 ms runtime when both the face detection and classifications stages operate together.


Sign in / Sign up

Export Citation Format

Share Document