scholarly journals Dual-frequency, dual-polarization microstrip antenna development for high-resolution, airborne SAR

Author(s):  
J. Granholm ◽  
N. Skou
2010 ◽  
Vol 27 (12) ◽  
pp. 1979-2001 ◽  
Author(s):  
Jeffrey C. Snyder ◽  
Howard B. Bluestein ◽  
Guifu Zhang ◽  
Stephen J. Frasier

Abstract X-band and shorter radar wavelengths are preferable for mobile radar systems because a narrow beam can be realized with a moderately sized antenna. However, attenuation by precipitation becomes progressively more severe with decreasing radar wavelength. As a result, X band has become a popular choice for meteorological radar systems that balances these two considerations. Dual-polarization provides several methods by which this attenuation (and differential attenuation) can be detected and corrected, mitigating one of the primary disadvantages of X-band radars. The dynamics of severe convective storms depend, to some extent, on the distribution and type of hydrometeors within the storm. To estimate the three-dimensional distribution of hydrometeors using X-band radar data, it is necessary to correct for attenuation before applying commonly used hydrometeor classification algorithms. Since 2002, a mobile dual-polarized Doppler weather radar designed at the University of Massachusetts, Amherst has been used to collect high-resolution data in severe convective storms in the plains. This study tests several attenuation correction procedures using dual-polarization measurements, along with a dual-frequency method using S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) and KOUN data. After correcting for attenuation and differential attenuation, a fuzzy logic hydrometeor classification algorithm, modified for X band with KOUN data as a reference, is used to attempt a retrieval of hydrometeor types in observed severe convective storms.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


Author(s):  
Jianlai Chen ◽  
Buge Liang ◽  
Junchao Zhang ◽  
De-Gui Yang ◽  
Yuhui Deng ◽  
...  

2004 ◽  
Vol 43 (5) ◽  
pp. 430-432 ◽  
Author(s):  
Wenjun Chen ◽  
Binhong Li ◽  
Xie Tao

Sign in / Sign up

Export Citation Format

Share Document