scholarly journals Attenuation Correction and Hydrometeor Classification of High-Resolution, X-band, Dual-Polarized Mobile Radar Measurements in Severe Convective Storms

2010 ◽  
Vol 27 (12) ◽  
pp. 1979-2001 ◽  
Author(s):  
Jeffrey C. Snyder ◽  
Howard B. Bluestein ◽  
Guifu Zhang ◽  
Stephen J. Frasier

Abstract X-band and shorter radar wavelengths are preferable for mobile radar systems because a narrow beam can be realized with a moderately sized antenna. However, attenuation by precipitation becomes progressively more severe with decreasing radar wavelength. As a result, X band has become a popular choice for meteorological radar systems that balances these two considerations. Dual-polarization provides several methods by which this attenuation (and differential attenuation) can be detected and corrected, mitigating one of the primary disadvantages of X-band radars. The dynamics of severe convective storms depend, to some extent, on the distribution and type of hydrometeors within the storm. To estimate the three-dimensional distribution of hydrometeors using X-band radar data, it is necessary to correct for attenuation before applying commonly used hydrometeor classification algorithms. Since 2002, a mobile dual-polarized Doppler weather radar designed at the University of Massachusetts, Amherst has been used to collect high-resolution data in severe convective storms in the plains. This study tests several attenuation correction procedures using dual-polarization measurements, along with a dual-frequency method using S-band Weather Surveillance Radar-1988 Doppler (WSR-88D) and KOUN data. After correcting for attenuation and differential attenuation, a fuzzy logic hydrometeor classification algorithm, modified for X band with KOUN data as a reference, is used to attempt a retrieval of hydrometeor types in observed severe convective storms.

2005 ◽  
Vol 22 (8) ◽  
pp. 1195-1206 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar

Abstract Monitoring of precipitation using high-frequency radar systems, such as the X band, is becoming increasingly popular because of their lower cost compared to their S-band counterpart. However, at higher frequencies, such as the X band, the precipitation-induced attenuation is significant, and introduces ambiguities in the interpretation of the radar observations. Differential phase measurements have been shown to be very useful for correcting the measured reflectivity for precipitation-induced attenuation. This paper presents a quantitative evaluation of two attenuation correction methodologies with specific emphasis on the X band. A simple differential phase–based algorithm as well as the range-profiling algorithm are studied. The impact of backscatter differential phase on the performance of attenuation correction is evaluated. It is shown that both of the algorithms for attenuation correction work fairly well, yielding attenuation-accurate corrected reflectivities with a negligible bias.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Chao Wang ◽  
Chong Wu ◽  
Liping Liu ◽  
Xi Liu ◽  
Chao Chen

The values of ratio a of the linear relationship between specific attenuation and specific differential phase vary significantly in convective storms as a result of resonance scattering. The best-linear-fit ratio a at X band is determined using the modified attenuation correction algorithm based on differential phase and attenuation, as well as the premise that reflectivity is unattenuated in S band radar detection. Meanwhile, the systemic reflectivity bias between the X band radar and S band radar and water layer attenuation (ZW) on the wet antenna cover of the X band radar are also considered. The good performance of the modified correction algorithm is demonstrated in a moderate rainfall event. The data were collected by four X band dual-polarization (X-POL) radar sites, namely, BJXCP, BJXFS, BJXSY, and BJXTZ, and a China’s New Generation Weather Radar (CINRAD/SA radar) site, BJSDX, in Beijing on 20 July 2016. Ratio a is calculated for each volume scan of the X band radar, with a mean value of 0.26 dB deg−1 varying from 0.20 to 0.31 dB deg−1. The average values of systemic reflectivity bias between the X band radar (at BJXCP, BJXFS, BJXSY, and BJXTZ) and S band radar (at BJSDX) are 0, −3, 2, and 0 dB, respectively. The experimentally determined ZW is in substantial agreement with the theoretically calculated ones, and their values are an order of magnitude smaller than rain attenuation. The comparison of the modified attenuation correction algorithm and the empirical-fixed-ratio correction algorithm is further evaluated at the X-POL radar. It is shown that the modified attenuation correction algorithm in the present paper provides higher correction accuracy for rain attenuation than the empirical-fixed-ratio correction algorithm.


2006 ◽  
Vol 63 (1) ◽  
pp. 187-203 ◽  
Author(s):  
Emmanouil N. Anagnostou ◽  
Mircea Grecu ◽  
Marios N. Anagnostou

Abstract The Keys Area Microphysics Project (KAMP), conducted as part of NASA’s Fourth Convective and Moisture Experiment (CAMEX-4) in the lower Keys area, deployed a number of ground radars and four arrays of rain gauge and disdrometer clusters. Among the various instruments is an X-band dual-polarization Doppler radar on wheels (XPOL), contributed by the University of Connecticut. XPOL was used to retrieve rainfall rate and raindrop size distribution (DSD) parameters to be used in support of KAMP science objectives. This paper presents the XPOL measurements in KAMP and the algorithm developed for attenuation correction and estimation of DSD model parameters. XPOL observations include the horizontal polarization reflectivity ZH, differential reflectivity ZDR, and differential phase shift ΦDP. Here, ZH and ZDR were determined to be positively biased by 3 and 0.3 dB, respectively. A technique was also applied to filter noise and correct for potential phase folding in ΦDP profiles. The XPOL attenuation correction uses parameterizations that relate the path-integrated specific (differential) attenuation along a radar ray to the filtered-ΦDP (specific attenuation) profile. Attenuation-corrected ZH and specific differential phase shift (derived from filtered ΦDP profiles) data are then used to derive two parameters of the normalized gamma DSD model, that is, intercept (Nw) and mean drop diameter (D0). The third parameter (shape parameter μ) is calculated using a constrained μ–Λ relationship derived from the measured raindrop spectra. The XPOL attenuation correction is evaluated using coincidental nonattenuated reflectivity fields from the Key West Weather Surveillance Radar-1988 Doppler (WSR-88D), while the DSD parameter retrievals are statistically assessed using DSD parameters calculated from the measured raindrop spectra. Statistics show that XPOL DSD parameter estimation is consistent with independent observations. XPOL estimates of water content and Nw are also shown to be consistent with corresponding retrievals from matched ER-2 Doppler radar (EDOP) profiling observations from the 19 September airborne campaign. Results shown in this paper strengthen the applicability of X-band dual-polarization high resolution observations in cloud modeling and precipitation remote sensing studies.


2019 ◽  
Vol 225 ◽  
pp. 165-171
Author(s):  
Zhaoming Li ◽  
Haonan Chen ◽  
Hongxing Chu ◽  
V. Chandrasekar ◽  
Hongbin Chen ◽  
...  

2006 ◽  
Vol 23 (12) ◽  
pp. 1668-1681 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar ◽  
Luca Baldini

Abstract New algorithms for rain attenuation correction of reflectivity factor and differential reflectivity are presented. Following the methodology suggested for the first time by Gorgucci et al., the new algorithms are developed based on the self-consistency principle, describing the interrelation between polarimetric measurements along the rain medium. There is an increasing interest in X-band radar systems, owing to the early success of the attenuation-correction procedures as well as the initiative of the Center for Collaborative Adaptive Sensing of the Atmosphere to deploy X-band radars in a networked fashion. In this paper, self-consistent algorithms for correcting attenuation and differential attenuation are developed. The performance of the algorithms for application to X-band dual-polarization radars is evaluated extensively. The evaluation is conducted based on X-band dual-polarization observations generated from S-band radar measurements. Evaluation of the new self-consistency algorithms shows significant improvement in performance compared to the current class of algorithms. In the case that reflectivity and differential reflectivity are calibrated between ±1 and ±0.2 dB, respectively, the new algorithms can estimate both attenuation and differential attenuation with less than 10% bias and 15% random error. In addition, the attenuation-corrected reflectivity and differential reflectivity are within 1–0.2 dB 96% and 99% of the time, respectively, demonstrating the good performance.


2010 ◽  
Vol 394 (1-2) ◽  
pp. 4-16 ◽  
Author(s):  
Marios N. Anagnostou ◽  
John Kalogiros ◽  
Emmanouil N. Anagnostou ◽  
Michele Tarolli ◽  
Anastasios Papadopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document