The impact of distributed wind power generation on voltage stability in distribution systems

Author(s):  
Jingxu Yang ◽  
Gengyin Li ◽  
Dawei Wu ◽  
Zhiwen Suo
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2442 ◽  
Author(s):  
Jussi Ekström ◽  
Matti Koivisto ◽  
Ilkka Mellin ◽  
Robert Millar ◽  
Matti Lehtonen

In future power systems, a large share of the energy will be generated with wind power plants (WPPs) and other renewable energy sources. With the increasing wind power penetration, the variability of the net generation in the system increases. Consequently, it is imperative to be able to assess and model the behavior of the WPP generation in detail. This paper presents an improved methodology for the detailed statistical modeling of wind power generation from multiple new WPPs without measurement data. A vector autoregressive based methodology, which can be applied to long-term Monte Carlo simulations of existing and new WPPs, is proposed. The proposed model improves the performance of the existing methodology and can more accurately analyze the temporal correlation structure of aggregated wind generation at the system level. This enables the model to assess the impact of new WPPs on the wind power ramp rates in a power system. To evaluate the performance of the proposed methodology, it is verified against hourly wind speed measurements from six locations in Finland and the aggregated wind power generation from Finland in 2015. Furthermore, a case study analyzing the impact of the geographical distribution of WPPs on wind power ramps is included.


Author(s):  
Sarika D. Patil

Recently the wind power generation has attracted special interest and many wind power stations are being in service in the world. In the wind turbine that mostly uses induction generators, tend to drain large amounts of Vars from the grid, potentially causing low voltage and may be voltage stability problems for the utility owner, especially in the case of large load variation on distribution feeder. Voltage-source converter based various FACTS devices have been used for flexible power flow control, secure loading and damping of power system oscillations. Some of those are used also to improve transient and dynamic stability of the wind power generation (WPGS).


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6532
Author(s):  
Vahab Rostampour ◽  
Thom S. Badings ◽  
Jacquelien M. A. Scherpen

We present a Buildings-to-Grid (BtG) integration framework with intermittent wind-power generation and demand flexibility management provided by buildings. First, we extend the existing BtG models by introducing uncertain wind-power generation and reformulating the interactions between the Transmission System Operator (TSO), Distribution System Operators (DSO), and buildings. We then develop a unified BtG control framework to deal with forecast errors in the wind power, by considering ancillary services from both reserves and demand-side flexibility. The resulting framework is formulated as a finite-horizon stochastic model predictive control (MPC) problem, which is generally hard to solve due to the unknown distribution of the wind-power generation. To overcome this limitation, we present a tractable robust reformulation, together with probabilistic feasibility guarantees. We demonstrate that the proposed demand flexibility management can substitute the traditional reserve scheduling services in power systems with high levels of uncertain generation. Moreover, we show that this change does not jeopardize the stability of the grid or violate thermal comfort constraints of buildings. We finally provide a large-scale Monte Carlo simulation study to confirm the impact of achievements.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6270
Author(s):  
Jianqiang Luo ◽  
Siqi Bu ◽  
Jiebei Zhu

Previous studies generally consider that the full converter-based wind power generation (FCWG) is a “decoupled” power source from the grid, which hardly participates in electromechanical oscillations. However, it was found recently that strong interaction could be induced which might incur severe resonance incidents in the electromechanical dynamic timescale. In this paper, the participation of FCWG in electromechanical dynamics is extensively investigated, and particularly, an unusual transition of the electromechanical oscillation mode (EOM) is uncovered for the first time. The detailed mathematical models of the open-loop and closed-loop power systems are firstly established, and modal analysis is employed to quantify the FCWG participation in electromechanical dynamics, with two new mode identification criteria, i.e., FCWG dynamics correlation ratio (FDCR) and quasi-electromechanical loop correlation ratio (QELCR). On this basis, the impact of different wind penetration levels and controller parameter settings on the participation of FCWG is investigated. It is revealed that if an FCWG oscillation mode (FOM) has a similar oscillation frequency to the system EOMs, there is a high possibility to induce strong interactions between FCWG dynamics and system electromechanical dynamics of the external power systems. In this circumstance, an interesting phenomenon may occur that an EOM may be dominated by FCWG dynamics, and hence is transformed into a quasi-EOM, which actively involves the participation of FCWG quasi-electromechanical state variables.


Sign in / Sign up

Export Citation Format

Share Document