stability in distribution
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 4)

Author(s):  
Rong Liu ◽  
Guirong Liu

This paper is concerned with a stochastic population model with Allee effect and jumps. First, we show the global existence of almost surely positive solution to the model. Next, exponential extinction and persistence in mean are discussed. Then, we investigated the global attractivity and stability in distribution. At last, some numerical results are given. The results show that if attack rate $a$ is in the intermediate range or very large, the population will go extinct. Under the premise that attack rate $a$ is less than growth rate $r$, if the noise intensity or jump is relatively large, the population will become extinct; on the contrary, the population will be persistent in mean. The results in this paper generalize and improve the previous related results.


2021 ◽  
Vol 40 (5) ◽  
pp. 9403-9411
Author(s):  
Zhifu Jia ◽  
Xinsheng Liu ◽  
Yu Zhang

Uncertain pantograph differential equation (UPDE for short) is a special unbounded uncertain delay differential equation. Stability in measure, stability almost surely and stability in p-th moment for uncertain pantograph differential equation have been investigated, which are not applicable for all situations, for the sake of completeness, this paper mainly gives the concept of stability in distribution, and proves the sufficient condition for uncertain pantograph differential equation being stable in distribution. In addition, the relationships among stability almost surely, stability in measure, stability in p-th moment, and stability in distribution for the uncertain pantograph differential equation are also discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Taolin Zhang ◽  
Yuanfu Shao ◽  
Xiaowan She

In this paper, a stochastic competitive model with distributed time delays and Lévy jumps is formulated. With or without a polluted environment, the model is denoted by (M) or (M0), respectively. The existence of positive solution, persistence in mean, and extinction of species for (M) and (M0) are both studied. The sufficient criteria of stability in distribution for model (M) is obtained. Finally, some numerical simulations are given to illustrate our theoretical results.


2021 ◽  
Vol 7 (3) ◽  
pp. 4068-4093
Author(s):  
Yuanfu Shao ◽  

<abstract><p>This work is concerned with a stochastic predator-prey system with S-type distributed time delays, regime switching and Lévy jumps. By use of the stochastic differential comparison theory and some inequality techniques, we study the extinction and persistence in the mean for each species, asymptotic stability in distribution and the optimal harvesting effort of the model. Then we present some simulation examples to illustrate the theoretical results and explore the effects of regime switching, distributed time delays and Lévy jumps on the dynamical behaviors, respectively.</p></abstract>


2021 ◽  
Vol 59 (1) ◽  
pp. 434-463
Author(s):  
Dang H. Nguyen ◽  
Duy Nguyen ◽  
Son L. Nguyen

Sign in / Sign up

Export Citation Format

Share Document