A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems

Author(s):  
J. Vesterstrom ◽  
R. Thomsen
Author(s):  
Jagat Kishore Pattanaik ◽  
Mousumi Basu ◽  
Deba Prasad Dash

AbstractThis paper presents a comparative study for five artificial intelligent (AI) techniques to the dynamic economic dispatch problem: differential evolution, particle swarm optimization, evolutionary programming, genetic algorithm, and simulated annealing. Here, the optimal hourly generation schedule is determined. Dynamic economic dispatch determines the optimal scheduling of online generator outputs with predicted load demands over a certain period of time taking into consideration the ramp rate limits of the generators. The AI techniques for dynamic economic dispatch are evaluated against a ten-unit system with nonsmooth fuel cost function as a common testbed and the results are compared against each other.


2020 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Hiroshi Sho

The purpose of this study is to clarify the search performance of differential evolution (DE) and particle swarm optimization (PSO) technologies for instinctively understanding the specificity of the used search methods. Due to achieve the task, here, the several search methods of both, i.e. DE/rand/1, DE/rand/2, DE/best/1, DE/best/2, the PSO, PSOIW, and CPSO, which are implemented in this paper. Therefore, many computer experiments are carried out for handling the given four benchmark problems. Through the analysis of the obtained experimental data, the detail search performance and characteristics of them are observed and compared, respectively. From the obtained results, it is found that the search methods of DE/best/1 and the PSO relatively have better search performance. Based on the findings and know-how, they can provide some important reference and key hint for encouraging development and improvement of both DE and PSO technologies in the near future. And as the applicative examples, the PSO is used to handle typical 2-bit and 3-bit parity problems for pattern classification.


Author(s):  
Sotirios K. Goudos

Antenna and microwave design problems are, in general, multi-objective. Multi-objective Evolutionary Algorithms (MOEAs) are suitable optimization techniques for solving such problems. Particle Swarm Optimization (PSO) and Differential Evolution (DE) have received increased interest from the electromagnetics community. The fact that both algorithms can efficiently handle arbitrary optimization problems has made them popular for solving antenna and microwave design problems. This chapter presents three different state-of-the-art MOEAs based on PSO and DE, namely: the Multi-objective Particle Swarm Optimization (MOPSO), the Multi-objective Particle Swarm Optimization with fitness sharing (MOPSO-fs), and the Generalized Differential Evolution (GDE3). Their applications to different design cases from antenna and microwave problems are reported. These include microwave absorber, microwave filters and Yagi-uda antenna design. The algorithms are compared and evaluated against other evolutionary multi-objective algorithms like Nondominated Sorting Genetic Algorithm-II (NSGA-II). The results show the advantages of using each algorithm.


2021 ◽  
Vol 11 (6) ◽  
pp. 2703
Author(s):  
Warisa Wisittipanich ◽  
Khamphe Phoungthong ◽  
Chanin Srisuwannapa ◽  
Adirek Baisukhan ◽  
Nuttachat Wisittipanit

Generally, transportation costs account for approximately half of the total operation expenses of a logistics firm. Therefore, any effort to optimize the planning of vehicle routing would be substantially beneficial to the company. This study focuses on a postman delivery routing problem of the Chiang Rai post office, located in the Chiang Rai province of Thailand. In this study, two metaheuristic methods—particle swarm optimization (PSO) and differential evolution (DE)—were applied with particular solution representation to find delivery routings with minimum travel distances. The performances of PSO and DE were compared along with those from current practices. The results showed that PSO and DE clearly outperformed the actual routing of the current practices in all the operational days examined. Moreover, DE performances were notably superior to those of PSO.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 597
Author(s):  
Kun Miao ◽  
Qian Feng ◽  
Wei Kuang

The particle swarm optimization algorithm (PSO) is a widely used swarm-based natural inspired optimization algorithm. However, it suffers search stagnation from being trapped into a sub-optimal solution in an optimization problem. This paper proposes a novel hybrid algorithm (SDPSO) to improve its performance on local searches. The algorithm merges two strategies, the static exploitation (SE, a velocity updating strategy considering inertia-free velocity), and the direction search (DS) of Rosenbrock method, into the original PSO. With this hybrid, on the one hand, extensive exploration is still maintained by PSO; on the other hand, the SE is responsible for locating a small region, and then the DS further intensifies the search. The SDPSO algorithm was implemented and tested on unconstrained benchmark problems (CEC2014) and some constrained engineering design problems. The performance of SDPSO is compared with that of other optimization algorithms, and the results show that SDPSO has a competitive performance.


Sign in / Sign up

Export Citation Format

Share Document