simulated annealing
Recently Published Documents


TOTAL DOCUMENTS

9043
(FIVE YEARS 1297)

H-INDEX

134
(FIVE YEARS 9)

2022 ◽  
Vol 13 (1) ◽  
pp. 1-22
Author(s):  
M. Saqib Nawaz ◽  
Philippe Fournier-Viger ◽  
Unil Yun ◽  
Youxi Wu ◽  
Wei Song

High utility itemset mining (HUIM) is the task of finding all items set, purchased together, that generate a high profit in a transaction database. In the past, several algorithms have been developed to mine high utility itemsets (HUIs). However, most of them cannot properly handle the exponential search space while finding HUIs when the size of the database and total number of items increases. Recently, evolutionary and heuristic algorithms were designed to mine HUIs, which provided considerable performance improvement. However, they can still have a long runtime and some may miss many HUIs. To address this problem, this article proposes two algorithms for HUIM based on Hill Climbing (HUIM-HC) and Simulated Annealing (HUIM-SA). Both algorithms transform the input database into a bitmap for efficient utility computation and for search space pruning. To improve population diversity, HUIs discovered by evolution are used as target values for the next population instead of keeping the current optimal values in the next population. Through experiments on real-life datasets, it was found that the proposed algorithms are faster than state-of-the-art heuristic and evolutionary HUIM algorithms, that HUIM-SA discovers similar HUIs, and that HUIM-SA evolves linearly with the number of iterations.


2022 ◽  
Vol 14 (2) ◽  
pp. 36
Author(s):  
Emanuel Arnoni Costa ◽  
Cristine Tagliapietra Schons ◽  
César Augusto Guimarães Finger ◽  
André Felipe Hess

Improving volumetric quantification of Parana pine (Araucaria angustifolia) in Mixed Ombrophilous Forest is a constant need in order to provide accurate and timely information on current and future growing stock to ensure forest management. Thus, the present study aimed to evaluate and compare the volume estimates obtained through Nonlinear Regression (NR), Genetic Algorithm (GA) and Simulated Annealing (SA) in order to generate accurate volume estimates. Volumetric equations were developed including the independent variables diameter at breast height (dbh), total height (h) and crown rate (cr) and from the fit through the NR, GA and SA approaches. The GA and SA approaches evaluated proved to be a reliable optimization strategy for parameter estimation in Parana pine volumetric modelling, however, no significant differences were found in comparison with the NR approach. This study therefore contributes through the generation of robust equations that could be used for accurate estimates of the volume of the Parana pine in southern Brazil, thus supporting the planning and establishment of management and conservation actions.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shahzad Ahmad Qureshi ◽  
Aziz Ul Rehman ◽  
Adil Aslam Mir ◽  
Muhammad Rafique ◽  
Wazir Muhammad

The proposed algorithm of inverse problem of computed tomography (CT), using limited views, is based on stochastic techniques, namely simulated annealing (SA). The selection of an optimal cost function for SA-based image reconstruction is of prime importance. It can reduce annealing time, and also X-ray dose rate accompanying better image quality. In this paper, effectiveness of various cost functions, namely universal image quality index (UIQI), root-mean-squared error (RMSE), structural similarity index measure (SSIM), mean absolute error (MAE), relative squared error (RSE), relative absolute error (RAE), and root-mean-squared logarithmic error (RMSLE), has been critically analyzed and evaluated for ultralow-dose X-ray CT of patients with COVID-19. For sensitivity analysis of this ill-posed problem, the stochastically estimated images of lung phantom have been reconstructed. The cost function analysis in terms of computational and spatial complexity has been performed using image quality measures, namely peak signal-to-noise ratio (PSNR), Euclidean error (EuE), and weighted peak signal-to-noise ratio (WPSNR). It has been generalized for cost functions that RMSLE exhibits WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB for 8 × 8 and 16 × 16 lung phantoms, respectively, and it has been applied for actual CT-based image reconstruction of patients with COVID-19. We successfully reconstructed chest CT images of patients with COVID-19 using RMSLE with eighteen projections, a 10-fold reduction in radiation dose exposure. This approach will be suitable for accurate diagnosis of patients with COVID-19 having less immunity and sensitive to radiation dose.


2022 ◽  
Author(s):  
Fanshu Gong ◽  
Yaping Geng ◽  
Pengfei Zhang ◽  
Feng Zhang ◽  
Xinfeng Fan ◽  
...  

Abstract Huangqi (Astragalus) is a versatile herb that possesses several therapeutic effects against a variety of diseases, especially lung diseases. The aim of this study was to establish a core collection of Astragalus germplasm resources based on molecular 10 SSR markers. Based on 380 samples of Astragalus collected from different areas, five different methods were utilized to construct the core collection of Astragalus, including PowerCore-based M strategy, CoreFinder-based M strategy, Core Hunter-based stepwise sampling, PowerMarker-based simulated annealing algorithm based on allele maximization, and PowerMarker-based simulated annealing algorithm based on maximizing genetic diversity. Of the constructed Astragalus core collections, the CoreFinder-based M strategy was found to be the most suitable approach as it reserved all the alleles and most of the genetic diversity parameters were higher than those of the initial collection. Additional analyses demonstrated that the genetic diversity of the core collection matched the properties of the initial collection. Further, the phylogenetic trees indicated that the population structure of the core collection was similar to that of the initial collection. In addition, our results showed that the optimal grouping value of K was 2. The construction of a core collection is beneficial for the understanding, management, and utilization of Astragalus. Moreover, this study will act as a valuable reference for constructing core collections for other plants or fungi.


2022 ◽  
Vol 14 (2) ◽  
pp. 775
Author(s):  
Yuling Jiao ◽  
Nan Cao ◽  
Jin Li ◽  
Lin Li ◽  
Xue Deng

An aim of sustainable development of the manufacturing industry is to reduce the idle time in the product-assembly process and improve the balance efficiency of the assembly line. A priority relationship diagram is obtained on an existing assembly line in the laboratory by measuring the task time of the chassis model, analyzing the product structure, and designing the assembly process. The type-E balance model of the U-shaped assembly line is established and solved by a heuristic algorithm based on the comprehensive rank value. The type-E balance problem of the U-shaped assembly-line plan of the chassis model is obtained, and the production line layout is planned. Combining instances to compare the results of the heuristic algorithm, genetic algorithm, and simulated annealing, comparison of the results shows that the degree of load balancing is slightly higher than genetic algorithm and simulated annealing. The balance efficiencies obtained by the heuristic algorithm are smaller than the genetic algorithm and simulated annealing. The calculation time is significantly less than the genetic algorithm and simulated annealing, and the scale of instances has little effect on the calculation time. The results verify that the model and the algorithm are effective. This study provides a reference for the entire process of the U-shaped assembly-line, type-E balance and the assembly products in laboratories.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 131
Author(s):  
Fei Li ◽  
Wentai Guo ◽  
Xiaotong Deng ◽  
Jiamei Wang ◽  
Liangquan Ge ◽  
...  

Ensemble learning of swarm intelligence evolutionary algorithm of artificial neural network (ANN) is one of the core research directions in the field of artificial intelligence (AI). As a representative member of swarm intelligence evolutionary algorithm, shuffled frog leaping algorithm (SFLA) has the advantages of simple structure, easy implementation, short operation time, and strong global optimization ability. However, SFLA is susceptible to fall into local optimas in the face of complex and multi-dimensional symmetric function optimization, which leads to the decline of convergence accuracy. This paper proposes an improved shuffled frog leaping algorithm of threshold oscillation based on simulated annealing (SA-TO-SFLA). In this algorithm, the threshold oscillation strategy and simulated annealing strategy are introduced into the SFLA, which makes the local search behavior more diversified and the ability to escape from the local optimas stronger. By using multi-dimensional symmetric function such as drop-wave function, Schaffer function N.2, Rastrigin function, and Griewank function, two groups (i: SFLA, SA-SFLA, TO-SFLA, and SA-TO-SFLA; ii: SFLA, ISFLA, MSFLA, DSFLA, and SA-TO-SFLA) of comparative experiments are designed to analyze the convergence accuracy and convergence time. The results show that the threshold oscillation strategy has strong robustness. Moreover, compared with SFLA, the convergence accuracy of SA-TO-SFLA algorithm is significantly improved, and the median of convergence time is greatly reduced as a whole. The convergence accuracy of SFLA algorithm on these four test functions are 90%, 100%, 78%, and 92.5%, respectively, and the median of convergence time is 63.67 s, 59.71 s, 12.93 s, and 8.74 s, respectively; The convergence accuracy of SA-TO-SFLA algorithm on these four test functions is 99%, 100%, 100%, and 97.5%, respectively, and the median of convergence time is 48.64 s, 32.07 s, 24.06 s, and 3.04 s, respectively.


Sign in / Sign up

Export Citation Format

Share Document