Frequency Domain Features Based Atrial Fibrillation Detection Using Machine Learning And Deep Learning Approach

Author(s):  
S.K Shrikanth Rao ◽  
MaheshKumar H Kolekar ◽  
Roshan Joy Martis
2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Author(s):  
Xiangyu Zhang ◽  
Jianqing Li ◽  
Zhipeng Cai ◽  
Li Zhang ◽  
Zhenghua Chen ◽  
...  

2021 ◽  
Author(s):  
Muhammad Sajid

Abstract Machine learning is proving its successes in all fields of life including medical, automotive, planning, engineering, etc. In the world of geoscience, ML showed impressive results in seismic fault interpretation, advance seismic attributes analysis, facies classification, and geobodies extraction such as channels, carbonates, and salt, etc. One of the challenges faced in geoscience is the availability of label data which is one of the most time-consuming requirements in supervised deep learning. In this paper, an advanced learning approach is proposed for geoscience where the machine observes the seismic interpretation activities and learns simultaneously as the interpretation progresses. Initial testing showed that through the proposed method along with transfer learning, machine learning performance is highly effective, and the machine accurately predicts features requiring minor post prediction filtering to be accepted as the optimal interpretation.


2021 ◽  
Author(s):  
Aditya Nagori ◽  
Anushtha Kalia ◽  
Arjun Sharma ◽  
Pradeep Singh ◽  
Harsh Bandhey ◽  
...  

Shock is a major killer in the ICU and machine learning based early predictions can potentially save lives. Generalization across age and geographical context is an unaddressed challenge. In this retrospective observational study, we built real-time shock prediction models generalized across age groups and continents. More than 1.5 million patient-hours of novel data from a pediatric ICU in New Delhi and 5 million patient-hours from the adult ICU MIMIC database were used to build models. We achieved model generalization through a novel fractal deep-learning approach and predicted shock up to 12 hours in advance. Our deep learning models showed a receiver operating curve (AUROC) drop from 78% (95%CI, 73-83) on MIMIC data to 66% (95%CI, 54-78) on New Delhi data, outperforming standard machine learning by nearly a 10% gap. Therefore, better representations and deep learning can partly address the generalizability-gap of ICU prediction models trained across geographies. Our data and algorithms are publicly available as a pre-configured docker environment at https://github.com/SAFE-ICU/ShoQPred.


Author(s):  
Gopika Rajendran ◽  
Ojus Thomas Lee ◽  
Arya Gopi ◽  
Jais jose ◽  
Neha Gautham

With the evolution of computing technology in many application like human robot interaction, human computer interaction and health-care system, 3D human body models and their dynamic motions has gained popularity. Human performance accompanies human body shapes and their relative motions. Research on human activity recognition is structured around how the complex movement of a human body is identified and analyzed. Vision based action recognition from video is such kind of tasks where actions are inferred by observing the complete set of action sequence performed by human. Many techniques have been revised over the recent decades in order to develop a robust as well as effective framework for action recognition. In this survey, we summarize recent advances in human action recognition, namely the machine learning approach, deep learning approach and evaluation of these approaches.


2021 ◽  
Author(s):  
Md Abu Rumman Refat ◽  
Md. Al Amin ◽  
Chetna Kaushal ◽  
Mst Nilufa Yeasmin ◽  
Md Khairul Islam

Author(s):  
Yogita Hande ◽  
Akkalashmi Muddana

Presently, the advances of the internet towards a wide-spread growth and the static nature of traditional networks has limited capacity to cope with organizational business needs. The new network architecture software defined networking (SDN) appeared to address these challenges and provides distinctive features. However, these programmable and centralized approaches of SDN face new security challenges which demand innovative security mechanisms like intrusion detection systems (IDS's). The IDS of SDN are designed currently with a machine learning approach; however, a deep learning approach is also being explored to achieve better efficiency and accuracy. In this article, an overview of the SDN with its security concern and IDS as a security solution is explained. A survey of existing security solutions designed to secure the SDN, and a comparative study of various IDS approaches based on a deep learning model and machine learning methods are discussed in the article. Finally, we describe future directions for SDN security.


Sign in / Sign up

Export Citation Format

Share Document