diabetes prediction
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 183)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Raja Krishnamoorthi ◽  
Shubham Joshi ◽  
Hatim Z. Almarzouki ◽  
Piyush Kumar Shukla ◽  
Ali Rizwan ◽  
...  

Diabetes is a chronic disease that continues to be a significant and global concern since it affects the entire population’s health. It is a metabolic disorder that leads to high blood sugar levels and many other problems such as stroke, kidney failure, and heart and nerve problems. Several researchers have attempted to construct an accurate diabetes prediction model over the years. However, this subject still faces significant open research issues due to a lack of appropriate data sets and prediction approaches, which pushes researchers to use big data analytics and machine learning (ML)-based methods. Applying four different machine learning methods, the research tries to overcome the problems and investigate healthcare predictive analytics. The study’s primary goal was to see how big data analytics and machine learning-based techniques may be used in diabetes. The examination of the results shows that the suggested ML-based framework may achieve a score of 86. Health experts and other stakeholders are working to develop categorization models that will aid in the prediction of diabetes and the formulation of preventative initiatives. The authors perform a review of the literature on machine models and suggest an intelligent framework for diabetes prediction based on their findings. Machine learning models are critically examined, and an intelligent machine learning-based architecture for diabetes prediction is proposed and evaluated by the authors. In this study, the authors utilize our framework to develop and assess decision tree (DT)-based random forest (RF) and support vector machine (SVM) learning models for diabetes prediction, which are the most widely used techniques in the literature at the time of writing. It is proposed in this study that a unique intelligent diabetes mellitus prediction framework (IDMPF) is developed using machine learning. According to the framework, it was developed after conducting a rigorous review of existing prediction models in the literature and examining their applicability to diabetes. Using the framework, the authors describe the training procedures, model assessment strategies, and issues associated with diabetes prediction, as well as solutions they provide. The findings of this study may be utilized by health professionals, stakeholders, students, and researchers who are involved in diabetes prediction research and development. The proposed work gives 83% accuracy with the minimum error rate.


2022 ◽  
Author(s):  
Hui‐Qi Qu ◽  
Jingchun Qu ◽  
Joseph Glessner ◽  
Yichuan Liu ◽  
Frank Mentch ◽  
...  

2022 ◽  
pp. 316-327
Author(s):  
Nareshkumar Mustary ◽  
Phani Kumar Singamsetty

Diabetes is one of the most deadly diseases on the planet. It is also a cause of a variety of illnesses, such as coronary artery disease, blindness, and urinary organ disease. In this situation, the patient must visit a medical center to obtain their results following consultation. Finding the right combination of characteristics and machine learning techniques for classification is also very critical. However, with the advancement of machine learning techniques, we now have the potential to find a solution to the current problem. The healthcare recommendation system (HRS) may be designed to predict health by evaluating patient lifestyle, physical health, mental health aspects using machine learning. For example, training the model using people's age and diabetes helps to predict new patients without a specific diagnostic for diabetes. The proposed deep learning model with convolutional neural network (D-CNN) achieves an overall accuracy of 96.25%. D-CNN is found to be more successful for diabetes prediction than other machine learning (ML) approaches in the experimental analysis.


2022 ◽  
pp. 103-119
Author(s):  
Basetty Mallikarjuna ◽  
Supriya Addanke ◽  
Anusha D. J.

This chapter introduces the novel approach in deep learning for diabetes prediction. The related work described the various ML algorithms in the field of diabetic prediction that has been used for early detection and post examination of the diabetic prediction. It proposed the Jaya-Tree algorithm, which is updated as per the existing random forest algorithm, and it is used to classify the two parameters named as the ‘Jaya' and ‘Apajaya'. The results described that Pima Indian diabetes dataset 2020 (PIS) predicts diabetes and obtained 97% accuracy.


Author(s):  
Lokesh Kola

Abstract: Diabetes is the deadliest chronic diseases in the world. According to World Health Organization (WHO) around 422 million people are currently suffering from diabetes, particularly in low and middle-income countries. Also, the number of deaths due to diabetes is close to 1.6 million. Recent research has proven that the occurrence of diabetes is likely to be seen in people aged between 18 and this has risen from 4.7 to 8.5% from 1980 to 2014. Early diagnosis is necessary so that the disease does not go into advanced stages which is quite difficult to cure. Significant research has been performed in diabetes predictions. As time passes, challenges keep increasing to build a system to detect diabetes systematically. The hype for Machine Learning is increasing day to day to analyse medical data to diagnose a disease. Previous research has focused on just identifying the diabetes without specifying its type. In this paper, we have we have predicted gestational diabetes (Type-3) by comparing various supervised and semi-supervised machine learning algorithms on two datasets i.e., binned and non-binned datasets and compared the performance based on evaluation metrics. Keywords: Gestational diabetes, Machine Learning, Supervised Learning, Semi-Supervised Learning, Diabetes Prediction


Sign in / Sign up

Export Citation Format

Share Document