Comparative Study of Machine Learning Supervised Techniques for Image Classification Using an Institutional Identification Documents Dataset

Author(s):  
Alvaro Ramiro Hernondez Millon ◽  
Miguel Mendoza-Moreno ◽  
Larry Mauricio Portocarrero Lopez ◽  
Alexander Castro-Romero
2021 ◽  
Vol 5 (3) ◽  
pp. 905
Author(s):  
Muhammad Afrizal Amrustian ◽  
Vika Febri Muliati ◽  
Elsa Elvira Awal

Japanese is one of the most difficult languages to understand and read. Japanese writing that does not use the alphabet is the reason for the difficulty of the Japanese language to read. There are three types of Japanese, namely kanji, katakana, and hiragana. Hiragana letters are the most commonly used type of writing. In addition, hiragana has a cursive nature, so each person's writing will be different. Machine learning methods can be used to read Japanese letters by recognizing the image of the letters. The Japanese letters that are used in this study are hiragana vowels. This study focuses on conducting a comparative study of machine learning methods for the image classification of Japanese letters. The machine learning methods that were successfully compared are Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, and K-Nearest Neighbor. The results of the comparative study show that the K-Nearest Neighbor method is the best method for image classification of hiragana vowels. K-Nearest Neighbor gets an accuracy of 89.4% with a low error rate.


Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


2019 ◽  
Vol 7 (4) ◽  
pp. 184-190
Author(s):  
Himani Maheshwari ◽  
Pooja Goswami ◽  
Isha Rana

2019 ◽  
Vol 6 (4) ◽  
pp. 12
Author(s):  
ABUBAKAR UMAR ◽  
A. BASHIR SULAIMON ◽  
BASHIR ABDULLAHI MUHAMMAD ◽  
S. ADEBAYO OLAWALE ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document